Federated reinforcement learning for generalizable motion planning

被引:1
|
作者
Yuan, Zhenyuan [1 ]
Xu, Siyuan [1 ]
Zhu, Minghui [1 ]
机构
[1] Penn State Univ, Sch Elect Engn & Comp Sci, University Pk, PA 16802 USA
关键词
D O I
10.23919/ACC55779.2023.10156236
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper considers the problem of learning a control policy that generalize well to novel environments given a set of sample environments. We develop a federated learning framework that enables collaborative learning of multiple learners and a centralized server without sharing their raw data. In each iteration, each learner uploads its local control policy and the corresponding estimated normalized arrival time to the server, which then computes the global optimum among the learners and broadcasts the optimal policy to the learners. Each learner then selects between its local control policy and that from the server for next iteration. By leveraging generalization error, our analysis shows that the proposed framework is able to provide generalization guarantees on arrival time and safety as well as consensus at global optimal value in the limiting case. Monte Carlo simulation is conducted for evaluation.
引用
收藏
页码:78 / 83
页数:6
相关论文
共 50 条
  • [21] Reinforcement learning techniques applied to the motion planning of a robotic manipulator
    Ribeiro, Francisco M.
    Pinto, Vitor H.
    2022 IEEE INTERNATIONAL CONFERENCE ON AUTONOMOUS ROBOT SYSTEMS AND COMPETITIONS (ICARSC), 2022, : 173 - 178
  • [22] Survey of Deep Reinforcement Learning for Motion Planning of Autonomous Vehicles
    Aradi, Szilard
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2022, 23 (02) : 740 - 759
  • [23] Monte Carlo Tree Search With Reinforcement Learning for Motion Planning
    Weingertner, Philippe
    Ho, Minnie
    Timofeev, Andrey
    Aubert, Sebastien
    Pita-Gil, Guillermo
    2020 IEEE 23RD INTERNATIONAL CONFERENCE ON INTELLIGENT TRANSPORTATION SYSTEMS (ITSC), 2020,
  • [24] Optimal motion planning by reinforcement learning in autonomous mobile vehicles
    Gomez, M.
    Gonzalez, R. V.
    Martinez-Marin, T.
    Meziat, D.
    Sanchez, S.
    ROBOTICA, 2012, 30 : 159 - 170
  • [25] Hierarchical Reinforcement Learning Approach for Motion Planning in Mobile Robotics
    Buitrago-Martinez, Andrea
    De la Rosa R, Fernando
    Lozano-Martinez, Fernando
    2013 IEEE LATIN AMERICAN ROBOTICS SYMPOSIUM (LARS 2013), 2013, : 83 - 88
  • [26] Hierarchical Task and Motion Planning through Deep Reinforcement Learning
    Newaz, Abdullah Al Redwan
    Alam, Tauhidul
    2021 FIFTH IEEE INTERNATIONAL CONFERENCE ON ROBOTIC COMPUTING (IRC 2021), 2021, : 100 - 105
  • [27] Energy-Efficient Reinforcement Learning for Motion Planning of AUV
    Wen, Jiayi
    Zhu, Jingwei
    Lin, Yejin
    Zhang, Guichen
    2022 IEEE 9TH INTERNATIONAL CONFERENCE ON UNDERWATER SYSTEM TECHNOLOGY: THEORY AND APPLICATIONS, USYS, 2022,
  • [28] Humanoid motion planning of robotic arm based on reinforcement learning
    Yang A.
    Chen Y.
    Xu Y.
    Yi Qi Yi Biao Xue Bao/Chinese Journal of Scientific Instrument, 2021, 42 (12): : 136 - 145
  • [29] A Fair Federated Learning Framework With Reinforcement Learning
    Sun, Yaqi
    Si, Shijing
    Wang, Jianzong
    Dong, Yuhan
    Zhu, Zhitao
    Xiao, Jing
    2022 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2022,
  • [30] Reactive motion planning of manipulator by distributed learning agents using reinforcement learning
    Naruse, Keitarou
    Kakazu, Yukinori
    Nippon Kikai Gakkai Ronbunshu, C Hen/Transactions of the Japan Society of Mechanical Engineers, Part C, 1995, 61 (581): : 131 - 137