Improvement potential detection of integrated biomethane liquefaction and liquid air energy storage system

被引:1
|
作者
Rehman, Ali [1 ]
Zhang, Bo [1 ,2 ]
Qyyum, Muhammad Abdul [3 ]
Zhuqiang, Yang [1 ,2 ]
Haider, Junaid [4 ]
机构
[1] Dalian Univ Technol, Ningbo Inst, Ningbo 315200, Zhejiang, Peoples R China
[2] Dalian Univ Technol, Sch Energy & Power, Key Lab Complex Energy Convers & Utilizat Liaoning, Dalian, Peoples R China
[3] Sultan Qaboos Univ, Coll Engn, Petr & Chem Engn Dept, Muscat, Oman
[4] Ulsan Natl Inst Sci & Technol, Sch Energy & Chem Engn, 50 UNIST Gil, Ulsan 44919, South Korea
关键词
Liquid biogas; Integrated energy systems; Liquid air energy system; Advanced exergy analysis; Improvement potential; Sustainability index; LIQUEFIED NATURAL-GAS; ADVANCED EXERGOECONOMIC ANALYSIS; THERMODYNAMIC ANALYSIS; EXERGY ANALYSIS; LNG; COLD; BIOGAS; CYCLE;
D O I
10.1016/j.est.2023.107455
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Biomethane (BM) is highly competitive bio-energy alternatives for lowering the dependency on fossil fuels globally. The form of BM that is most suitable for storage as well as shipping to far-flung areas of the world is liquefied biomethane (LBM). However, due to the significant power consumption by compressors used in BM liquefaction process (like natural gas), it is a cost-and energy-intensive operation. Additionally, because bio-methane is created at atmospheric pressure, unlike ordinary natural gas, liquefaction requires more power consumption because the pressure at which BM is produced is much less than corresponding critical pressure. Therefore, an integrated system of liquid air energy storage (LAES) system discharging end and a biomethane liquefaction process is introduced that is both economical and efficient in terms of energy use. The sub-cooling and liquefaction processes of biomethane are aided by the cold-exergy of liquid air at the time of regasification mode of LAES, which eventually lowers the refrigeration cycle duty of LBM process. On the other hand, gaining the additional advantage, the expansion stage of liquid air is aided by the thermal exergy of a compressed mixed refrigerant (MR). On the basis of conventional exergy analysis, composite curves analysis, advanced exergy analysis, and sustainability index, the impacts of novel integration of LBM and LAES are estimated in this study. Conventional exergy analysis determines that 15.9 % of exergy destruction is decreased in the proposed LBM-LAES system having additional power production of 4529 kW using gas turbine. Results based on advanced exergy analysis conclude that avoidable, endogenous and exogenous portions of exergy destructions are decreased by 28.9 %, 39.9 % and 43 %, respectively; which implies the significant improvement potential. Composite curves analysis depicts that the efficiency of primary cryogenic heat exchanger is improved in the proposed integrated scheme. Additionally, the overall sustainability index is increased from 1.55 to 2.13 for LBM-LAES process.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] Design Considerations for the Liquid Air Energy Storage System Integrated to Nuclear Steam Cycle
    Song, Seok-Ho
    Heo, Jin-Young
    Lee, Jeong-Ik
    APPLIED SCIENCES-BASEL, 2021, 11 (18):
  • [22] Modelling and optimization of liquid air energy storage systems with different liquefaction cycles
    Wen, Na
    Tan, Hongbo
    ENERGY CONVERSION AND MANAGEMENT, 2022, 271
  • [23] Cold Storage Solutions for a Liquid Air Energy Storage System
    Trommler, Gregor
    Klupsch, Martin
    Eggers, Detlef
    Bobsin, Philipp
    Wendt, Christian
    Bohne, Niklas
    15TH CRYOGENICS 2019 IIR INTERNATIONAL CONFERENCE, 2019, : 306 - 310
  • [24] Stochastic optimal sizing of integrated cryogenic energy storage and air liquefaction unit in microgrid
    Kalavani, Farshad
    Mohammadi-Ivatloo, Behnam
    Karimi, Ali
    Kalavani, Farshid
    RENEWABLE ENERGY, 2019, 136 : 15 - 22
  • [25] Influence of Energy Storage Pressure on the Characteristics of Liquid Air Energy Storage System
    Liu Q.
    Ge J.
    Huang B.
    Wang W.
    Liu Y.
    He Y.
    Hsi-An Chiao Tung Ta Hsueh/Journal of Xi'an Jiaotong University, 2019, 53 (11): : 1 - 9
  • [26] Levelised Cost of Storage (LCOS) analysis of liquid air energy storage system integrated with Organic Rankine Cycle
    Tafone, Alessio
    Ding, Yulong
    Li, Yongliang
    Xie, Chunping
    Romagnoli, Alessandro
    ENERGY, 2020, 198
  • [27] Low-carbon economic dispatching of integrated energy system considering liquid air energy storage and integrated demand response
    Zhu Z.
    Sheng M.
    Chen Z.
    Dianli Zidonghua Shebei/Electric Power Automation Equipment, 2022, 42 (12): : 1 - 13
  • [28] Thermodynamic analysis of a liquid air energy storage system
    Guizzi, Giuseppe Leo
    Manno, Michele
    Tolomei, Ludovica Maria
    Vitali, Ruggero Maria
    ENERGY, 2015, 93 : 1639 - 1647
  • [29] THERMOECONOMIC ANALYSIS OF LIQUID AIR ENERGY STORAGE SYSTEM
    Gokceer, Tonguc
    Demirkaya, Gokmen
    Padilla, Ricardo Vasquez
    PROCEEDINGS OF THE ASME 11TH INTERNATIONAL CONFERENCE ON ENERGY SUSTAINABILITY, 2017, 2017,
  • [30] THE IMPROVEMENT OF THE CHARACTERISTICS OF INTEGRATED DFIG BY BATTERY ENERGY STORAGE SYSTEM
    Xia, Xue
    Liu, Yutian
    2012 CHINA INTERNATIONAL CONFERENCE ON ELECTRICITY DISTRIBUTION (CICED), 2012,