Deep Learning Based Face Detection and Identification of Criminal Suspects

被引:3
|
作者
Sandhya, S. [1 ]
Balasundaram, A. [2 ]
Shaik, Ayesha [1 ]
机构
[1] Vellore Inst Technol VIT, Sch Comp Sci & Engn, Chennai 600127, India
[2] Vellore Inst Technol VIT, Ctr Cyber Phys Syst, Sch Comp Sci & Engn, Chennai 600127, India
来源
CMC-COMPUTERS MATERIALS & CONTINUA | 2023年 / 74卷 / 02期
关键词
Deep learning; opencv; deep neural network; single shot multi-box detector; auto-encoder; cosine similarity; MODEL;
D O I
10.32604/cmc.2023.032715
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Occurrence of crimes has been on the constant rise despite the emerging discoveries and advancements in the technological field in the past decade. One of the most tedious tasks is to track a suspect once a crime is committed. As most of the crimes are committed by individuals who have a history of felonies, it is essential for a monitoring system that does not just detect the person's face who has committed the crime, but also their identity. Hence, a smart criminal detection and identification system that makes use of the OpenCV Deep Neural Network (DNN) model which employs a Single Shot Multibox Detector for detection of face and an auto-encoder model in which the encoder part is used for matching the captured facial images with the criminals has been proposed. After detection and extraction of the face in the image by face cropping, the captured face is then compared with the images in the Criminal Database. The comparison is performed by calculating the similarity value between each pair of images that are obtained by using the Cosine Similarity metric. After plotting the values in a graph to find the threshold value, we conclude that the confidence rate of the encoder model is 0.75 and above.
引用
收藏
页码:2331 / 2343
页数:13
相关论文
共 50 条
  • [31] A Deep Learning Model for Face Mask Detection
    Abd El-Aziz, A. A.
    Azim, Nesrine A.
    Mahmood, Mahmood A.
    Alshammari, Hamoud
    INTERNATIONAL JOURNAL OF COMPUTER SCIENCE AND NETWORK SECURITY, 2021, 21 (10): : 101 - 106
  • [32] Deep learning for face mask detection: a survey
    Aanchal Sharma
    Rahul Gautam
    Jaspal Singh
    Multimedia Tools and Applications, 2023, 82 : 34321 - 34361
  • [33] Deep Learning for Face Detection: Recent Advancements
    Qasim, Hafiz Syed Ahmed
    Shahzad, Muhammad
    Fraz, Muhammad Moazam
    2021 INTERNATIONAL CONFERENCE ON DIGITAL FUTURES AND TRANSFORMATIVE TECHNOLOGIES (ICODT2), 2021,
  • [34] Detection and Recognition of Face Using Deep Learning
    Sakthimohan, M.
    Elizabeth Rani, G.
    Navaneethakrishnan, M.
    Janani, K.
    Nithva, V.
    Pranav, R.
    Proceedings of the 2023 International Conference on Intelligent Systems for Communication, IoT and Security, ICISCoIS 2023, 2023, : 72 - 76
  • [35] Detection of Face Morphing Attacks by Deep Learning
    Seibold, Clemens
    Samek, Wojciech
    Hilsmann, Anna
    Eisert, Peter
    DIGITAL FORENSICS AND WATERMARKING, 2017, 10431 : 107 - 120
  • [36] LEARNING DEEP FEATURES FOR EFFICIENT FACE DETECTION
    Hbali, Youssef
    Ballihi, Lahoucine
    Ed-doughmi, Younes
    Sadgal, Mohammed
    2019 THIRD INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTING IN DATA SCIENCES (ICDS 2019), 2019,
  • [37] Deep learning for face mask detection: a survey
    Sharma, Aanchal
    Gautam, Rahul
    Singh, Jaspal
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 82 (22) : 34321 - 34361
  • [38] Face Detection and Comparison Using Deep Learning
    Saraswathi, R. Vijaya
    Vasundhara, D. N.
    Vasavi, R.
    Deepthi, G. Laxmi
    Jones, K. Jaya
    PROCEEDINGS OF SECOND INTERNATIONAL CONFERENCE ON ADVANCES IN COMPUTER ENGINEERING AND COMMUNICATION SYSTEMS, ICACECS 2021, 2022, : 499 - 512
  • [39] Face Detection and Tagging using Deep Learning
    Mehta, Jinesh
    Ramnani, Eshaan
    Singh, Sanjay
    2018 2ND INTERNATIONAL CONFERENCE ON COMPUTER, COMMUNICATION, AND SIGNAL PROCESSING (ICCCSP): SPECIAL FOCUS ON TECHNOLOGY AND INNOVATION FOR SMART ENVIRONMENT, 2018, : 100 - 105
  • [40] Face Emotion Detection Using Deep Learning
    Jain, Paras
    Murali, M.
    Ali, Amaan
    PROCEEDINGS OF THE 2021 FIFTH INTERNATIONAL CONFERENCE ON I-SMAC (IOT IN SOCIAL, MOBILE, ANALYTICS AND CLOUD) (I-SMAC 2021), 2021, : 517 - 522