Extracellular Vesicles Derived from Three-Dimensional-Cultured Human Umbilical Cord Blood Mesenchymal Stem Cells Prevent Inflammation and Dedifferentiation in Pancreatic Islets

被引:6
|
作者
Lee, Eunwon [1 ,2 ]
Ha, Seungyeon [1 ,2 ,3 ]
Kim, Gyuri [1 ]
Kim, Jae Hyeon [1 ,2 ,3 ]
Jin, Sang-Man [1 ,2 ]
机构
[1] Sungkyunkwan Univ, Samsung Med Ctr, Sch Med, Dept Med,Div Endocrinol & Metab, Seoul 06351, South Korea
[2] Samsung Biomed Res Inst, Samsung Med Ctr, Seoul 06351, South Korea
[3] Samsung Adv Inst Hlth Sci & Technol, Dept Hlth Sci & Technol, Seoul 06351, South Korea
基金
新加坡国家研究基金会;
关键词
HYPERGLYCEMIA; DICKKOPF-1; MECHANISM; PROTECTS; SURVIVAL;
D O I
10.1155/2023/5475212
中图分类号
Q813 [细胞工程];
学科分类号
摘要
It is unclear whether extracellular vesicles (EVs) from mesenchymal stem cells (MSCs) have a direct protective effect on pancreatic islets. In addition, whether culturing MSCs in three dimensions (3D) instead of a monolayer (2D) can induce changes in the cargo of EVs that facilitate the polarization of macrophages into an M2 phenotype has not been investigated. We sought to determine whether EVs from MSCs cultured in 3D can prevent inflammation and dedifferentiation in pancreatic islets and, if so, whether the protective effect is superior to that of EVs from 2D MSCs. Human umbilical cord blood-(hUCB-) MSCs cultured in 3D were optimized according to cell density, exposure to hypoxia, and cytokine treatment based on the ability of the hUCB-MSC-derived EVs to induce the M2 polarization of macrophages. Islets isolated from human islet amyloid polypeptide (hIAPP) heterozygote transgenic mice were cultured in serum-deprived conditions with hUCB-MSC-derived EVs. EVs derived from 3D hUCB-MSCs had more abundant microRNAs involved in M2 polarization of macrophages and had an enhanced M2 polarization ability on macrophages, which was optimized when the 3D culture condition was 2:5 x 10(4) cells per spheroid without preconditioning with hypoxia and cytokine exposure. When islets isolated from hIAPP heterozygote transgenic mice were cultured in serum-deprived conditions with hUCB-MSC-derived EVs, the EVs derived from 3D hUCB-MSCs suppressed the expression of proinflammatory cytokines and caspase-1 in pancreatic islets and increased the proportion of M2-polarized islet-resident macrophages. They improved glucose-stimulated insulin secretion, reduced the expression of Oct4 and NGN3, and induced the expression of Pdx1 and FoxO1. The greater suppression of IL-1 beta, NLRP3 inflammasome, caspase-1, and Oct4 and induction of Pdx1 and FoxO1 were found in islets cultured with the EVs derived from 3D hUCB-MSCs. In conclusion, EVs derived from 3D hUCB-MSCs optimized for M2 polarization attenuated nonspecific inflammation and preserved beta-cell identity of pancreatic islets.
引用
收藏
页数:17
相关论文
共 50 条
  • [41] Application of mesenchymal stem cells derived from the umbilical cord or Wharton's jelly and their extracellular vesicles in the treatment of various diseases
    Patel, Ayyub Ali
    Mohamed, Asma'a H.
    Rizaev, Jasur
    Mallick, Ayaz Khurram
    Qasim, Maytham T.
    Al Abdulmonem, Waleed
    Jamal, Azfar
    Hattiwale, Haroonrashid M.
    Kamal, Mohammad Azhar
    Ahmad, Fuzail
    TISSUE & CELL, 2024, 89
  • [42] Transplantation of human cord blood mononuclear cells and umbilical cord-derived mesenchymal stem cells in autism
    Lv, Yong-Tao
    Zhang, Yun
    Liu, Min
    Qiuwaxi, Jia-na-ti
    Ashwood, Paul
    Cho, Sungho Charles
    Huan, Ying
    Ge, Ru-Cun
    Chen, Xing-Wang
    Wang, Zhao-Jing
    Kim, Byung-Jo
    Hu, Xiang
    JOURNAL OF TRANSLATIONAL MEDICINE, 2013, 11
  • [43] Transplantation of human cord blood mononuclear cells and umbilical cord-derived mesenchymal stem cells in autism
    Yong-Tao Lv
    Yun Zhang
    Min Liu
    Jia-na-ti Qiuwaxi
    Paul Ashwood
    Sungho Charles Cho
    Ying Huan
    Ru-Cun Ge
    Xing-Wang Chen
    Zhao-Jing Wang
    Byung-Jo Kim
    Xiang Hu
    Journal of Translational Medicine, 11
  • [44] Isolation and characterization of mesenchymal stem cells from human umbilical cord blood
    Lee, MW
    Moon, YJ
    Yang, MS
    Yoon, HH
    Kim, SK
    Shin, JH
    Park, JS
    Kim, HC
    Choi, JE
    Kim, YJ
    TRANSFUSION, 2003, 43 (09) : 54A - 54A
  • [45] Isolation of Mesenchymal Stem Cells from Cryopreserved Human Umbilical Cord Blood
    Myoung Woo Lee
    Mal Sook Yang
    Joon Seong Park
    Hugh C. Kim
    Young Jin Kim
    Jeongeun Choi
    International Journal of Hematology, 2005, 81 : 126 - 130
  • [46] Isolation of mesenchymal stem cells from cryopreserved human umbilical cord blood
    Lee, MW
    Yang, MS
    Park, JS
    Kim, HC
    Kim, YJ
    Choi, J
    INTERNATIONAL JOURNAL OF HEMATOLOGY, 2005, 81 (02) : 126 - 130
  • [47] Antifibrotic Effects of Extracellular Vesicles From Umbilical Cord-Mesenchymal Stem Cells on Lung Myofibroblast Cells
    Ortega, Francisco G.
    Rio, Carlos
    Jahn, Andreas
    Gaya, Antonio
    Calvo, Javier
    Monjo, Marta
    Montes-Worboys, Ana
    Molina-Molina, Maria
    Sala-Llinas, Ernest
    Ramis, Joana M.
    ARCHIVOS DE BRONCONEUMOLOGIA, 2023, 59 (07): : 454 - 457
  • [48] Articular chondrocyte-derived extracellular vesicles promote cartilage differentiation of human umbilical cord mesenchymal stem cells by activation of autophagy
    Ma, Ke
    Zhu, Bo
    Wang, Zetao
    Cai, Peian
    He, Mingwei
    Ye, Danyan
    Yan, Guohua
    Zheng, Li
    Yang, Lujun
    Zhao, Jinmin
    JOURNAL OF NANOBIOTECHNOLOGY, 2020, 18 (01) : 163
  • [49] Articular chondrocyte-derived extracellular vesicles promote cartilage differentiation of human umbilical cord mesenchymal stem cells by activation of autophagy
    Ke Ma
    Bo Zhu
    Zetao Wang
    Peian Cai
    Mingwei He
    Danyan Ye
    Guohua Yan
    Li Zheng
    Lujun Yang
    Jinmin Zhao
    Journal of Nanobiotechnology, 18
  • [50] The protective effects of human umbilical cord mesenchymal stem cell-derived extracellular vesicles on cisplatin-damaged granulosa cells
    Zhang, Jin
    Yin, Huiqun
    Jiang, Hong
    Du, Xin
    Yang, Ziling
    TAIWANESE JOURNAL OF OBSTETRICS & GYNECOLOGY, 2020, 59 (04): : 527 - 533