Fully automated clinical target volume segmentation for glioblastoma radiotherapy using a deep convolutional neural network

被引:2
|
作者
Sadeghi, Sogand [1 ]
Farzin, Mostafa [2 ]
Gholami, Somayeh [3 ]
机构
[1] Univ Mazandaran, Fac Sci, Dept Nucl Phys, Babolsar, Iran
[2] Univ Tehran Med Sci, Neurosci Inst, Brain & Spinal Cord Injury Res Ctr, Tehran, Iran
[3] Univ Arkansas Med Sci, Dept Radiat Oncol, Little Rock, AR 72205 USA
关键词
deep learning; convolutional neural networks; brain tumour segmentation; clinical target volume; treat-ment planning; BRAIN-TUMOR SEGMENTATION; DELINEATION; ORGANS; ATLAS; HEAD;
D O I
10.5114/pjr.2023.124434
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Purpose: Target volume delineation is a crucial step prior to radiotherapy planning in radiotherapy for glioblastoma. This step is performed manually, which is time-consuming and prone to intra-and inter-rater variabilities. Therefore, the purpose of this study is to evaluate a deep convolutional neural network (CNN) model for automatic segmenta-tion of clinical target volume (CTV) in glioblastoma patients.Material and methods: In this study, the modified Segmentation-Net (SegNet) model with deep supervision and re-sidual-based skip connection mechanism was trained on 259 glioblastoma patients from the Multimodal Brain Tumour Image Segmentation Benchmark (BraTS) 2019 Challenge dataset for segmentation of gross tumour volume (GTV). Then, the pre-trained CNN model was fine-tuned with an independent clinical dataset (n = 37) to perform the CTV segmentation. In the process of fine-tuning, to generate a CT segmentation mask, both CT and MRI scans were simultaneously used as input data. The performance of the CNN model in terms of segmentation accuracy was evaluated on an independent clinical test dataset (n = 15) using the Dice Similarity Coefficient (DSC) and Hausdorff distance. The impact of auto-segmented CTV definition on dosimetry was also analysed.Results: The proposed model achieved the segmentation results with a DSC of 89.60 +/- 3.56% and Hausdorff distance of 1.49 +/- 0.65 mm. A statistically significant difference was found for the Dmin and Dmax of the CTV between manually and automatically planned doses. Conclusions: The results of our study suggest that our CNN-based auto-contouring system can be used for segmenta-tion of CTVs to facilitate the brain tumour radiotherapy workflow.
引用
收藏
页码:E31 / E40
页数:10
相关论文
共 50 条
  • [41] A deep convolutional neural network for segmentation of whole-slide pathology images in glioblastoma
    Shirazi, Amin Zadeh
    McDonnell, Mark D.
    Fornaciari, Eric
    Bagherian, Narjes Sadat
    Scheer, Kaitlin G.
    Samuel, Michael S.
    Yaghoobi, Mahdi
    Ormsby, Rebecca J.
    Poonnoose, Santosh
    Tumes, Damon
    Gomez, Guillermo A.
    CLINICAL CANCER RESEARCH, 2021, 27 (05)
  • [42] Fully automated pelvic bone segmentation in multiparameteric MRI using a 3D convolutional neural network
    Liu, Xiang
    Han, Chao
    Wang, He
    Wu, Jingyun
    Cui, Yingpu
    Zhang, Xiaodong
    Wang, Xiaoying
    INSIGHTS INTO IMAGING, 2021, 12 (01)
  • [43] Fully automated pelvic bone segmentation in multiparameteric MRI using a 3D convolutional neural network
    Xiang Liu
    Chao Han
    He Wang
    Jingyun Wu
    Yingpu Cui
    Xiaodong Zhang
    Xiaoying Wang
    Insights into Imaging, 12
  • [44] Fully automated intracranial ventricle segmentation on CT with 2D regional convolutional neural network to estimate ventricular volume
    Huff, Trevor J.
    Ludwig, Parker E.
    Salazar, David
    Cramer, Justin A.
    INTERNATIONAL JOURNAL OF COMPUTER ASSISTED RADIOLOGY AND SURGERY, 2019, 14 (11) : 1923 - 1932
  • [45] Fully Convolutional Neural Network for Improved Brain Segmentation
    Afifa Khaled
    Jian-Jun Han
    Taher A. Ghaleb
    Radman Mohamed
    Arabian Journal for Science and Engineering, 2023, 48 : 2133 - 2146
  • [46] Automated Detection, Segmentation, and Classification of Pericardial Effusions on Chest CT Using a Deep Convolutional Neural Network
    Wilder-Smith, Adrian Jonathan
    Yang, Shan
    Weikert, Thomas
    Bremerich, Jens
    Haaf, Philip
    Segeroth, Martin
    Ebert, Lars C.
    Sauter, Alexander
    Sexauer, Raphael
    DIAGNOSTICS, 2022, 12 (05)
  • [47] Automated detection and segmentation of sclerotic spinal lesions on body CTs using a deep convolutional neural network
    Chang, Connie Y.
    Buckless, Colleen
    Yeh, Kaitlyn J.
    Torriani, Martin
    SKELETAL RADIOLOGY, 2022, 51 (02) : 391 - 399
  • [48] Automated detection and segmentation of sclerotic spinal lesions on body CTs using a deep convolutional neural network
    Connie Y. Chang
    Colleen Buckless
    Kaitlyn J. Yeh
    Martin Torriani
    Skeletal Radiology, 2022, 51 : 391 - 399
  • [49] Fully automated intracranial ventricle segmentation on CT with 2D regional convolutional neural network to estimate ventricular volume
    Trevor J. Huff
    Parker E. Ludwig
    David Salazar
    Justin A. Cramer
    International Journal of Computer Assisted Radiology and Surgery, 2019, 14 : 1923 - 1932
  • [50] Fully Convolutional Neural Network for Improved Brain Segmentation
    Khaled, Afifa
    Han, Jian-Jun
    Ghaleb, Taher A.
    Mohamed, Radman
    ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 2023, 48 (02) : 2133 - 2146