Randomized algorithms for the computation of multilinear rank-(μ1,μ2,μ3) approximations

被引:0
|
作者
Che, Maolin [1 ]
Wei, Yimin [2 ,3 ]
Xu, Yanwei [4 ]
机构
[1] Southwestern Univ Finance & Econ, Sch Math, Chengdu 611130, Peoples R China
[2] Fudan Univ, Sch Math Sci, Shanghai 200433, Peoples R China
[3] Fudan Univ, Key Lab Math Nonlinear Sci, Shanghai 200433, Peoples R China
[4] Huawei Technol Co Ltd, Theory Lab, Cent Res Inst, 2012 Labs, Hong Kong, Peoples R China
关键词
Randomized algorithms; Random projection; Multilinear rank-(mu(1); mu(2); mu(3)); approximation; Sparse subspace embedding; Singular value decomposition; Singular values; The power scheme; TENSOR; TUCKER; MATRIX; DECOMPOSITION;
D O I
10.1007/s10898-022-01182-8
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We present some randomized algorithms for computing multilinear rank-(mu(1),mu(2),mu(3)) approximations of tensors by combining the sparse subspace embedding and the singular value decomposition. The error bound for this algorithm with the high probability is obtained by the properties of sparse subspace embedding. Furthermore, combining the power scheme and the proposed randomized algorithm, we derive a three-stage randomized algorithm and make a probabilistic analysis for its error bound. The efficiency of the proposed algorithms is illustrated via numerical examples.
引用
收藏
页码:373 / 403
页数:31
相关论文
共 50 条
  • [21] The Best Rank- (R1, R2, R3) Approximation of Tensors by Means of a Geometric Newton Method
    Ishteva, Mariya
    De Lathauwer, Lieven
    Absil, P. -A.
    Van Huffel, Sabine
    NUMERICAL ANALYSIS AND APPLIED MATHEMATICS, 2008, 1048 : 274 - +
  • [22] OPTIMIZATION-BASED ALGORITHMS FOR TENSOR DECOMPOSITIONS: CANONICAL POLYADIC DECOMPOSITION, DECOMPOSITION IN RANK-(Lr, Lr, 1) TERMS, AND A NEW GENERALIZATION
    Sorber, Laurent
    Van Barel, Marc
    De Lathauwer, Lieven
    SIAM JOURNAL ON OPTIMIZATION, 2013, 23 (02) : 695 - 720
  • [23] Differential-geometric Newton method for the best rank-(R1, R2, R3) approximation of tensors
    Mariya Ishteva
    Lieven De Lathauwer
    P.-A. Absil
    Sabine Van Huffel
    Numerical Algorithms, 2009, 51 : 179 - 194
  • [24] Efficient Computation of Robust Weighted Low-Rank Matrix Approximations Using the L1 Norm
    Eriksson, Anders
    van den Hengel, Anton
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2012, 34 (09) : 1681 - 1690
  • [25] Pattern recognition framework based on the best rank-(R1, R2, ... , RK) tensor approximation
    Cyganek, B.
    COMPUTATIONAL VISION AND MEDICAL IMAGE PROCESSING IV, 2014, : 301 - 306
  • [26] Low tensor train and low multilinear rank approximations of 3D tensors for compression and de-speckling of optical coherence tomography images
    Kopriva, Ivica
    Shi, Fei
    Lai, Mingyig
    Stanfel, Marija
    Chen, Haoyu
    Chen, Xinijan
    PHYSICS IN MEDICINE AND BIOLOGY, 2023, 68 (12):
  • [27] A Krylov-Schur-like method for computing the best rank-(r1,r2,r3) approximation of large and sparse tensors
    Elden, Lars
    Dehghan, Maryam
    NUMERICAL ALGORITHMS, 2022, 91 (03) : 1315 - 1347
  • [28] THE COMPUTATION OF F(3)2(1)
    WIMP, J
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 1981, 10 (01) : 55 - 62
  • [29] Efficient Computation of Robust Low-Rank Matrix Approximations in the Presence of Missing Data using the L1 Norm
    Eriksson, Anders
    van den Hengel, Anton
    2010 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2010, : 771 - 778
  • [30] A Krylov-Schur-like method for computing the best rank-(r1,r2,r3) approximation of large and sparse tensors
    Lars Eldén
    Maryam Dehghan
    Numerical Algorithms, 2022, 91 : 1315 - 1347