The mitochondria-targeted Kaempferol nanoparticle ameliorates severe acute pancreatitis

被引:3
|
作者
Wen, E. [1 ,2 ]
Cao, Yi [1 ]
He, Shiwen [1 ]
Zhang, Yuezhou [3 ]
You, Lanlan [1 ]
Wang, Tingqiu [1 ]
Wang, Zhigang [1 ]
He, Jun [4 ]
Feng, Yi [5 ]
机构
[1] Chongqing Med Univ, Affiliated Hosp 2, Dept Ultrasound, 76, Linjiang Rd, Chongqing, Peoples R China
[2] Chongqing Med Univ, Affiliated Hosp 2, Precis Med Ctr, Chongqing, Peoples R China
[3] Chongqing Med Univ, Affiliated Hosp 2, Dept Hepatobiliary Surg, Chongqing, Peoples R China
[4] Chengdu Med Coll, First Affiliated Hosp, Dept Pathol, 278,Baoguang Ave, Chengdu 610500, Sichuan, Peoples R China
[5] Third Mil Med Univ, Army Med Univ, Southwest Hosp, Inst Burn Res,State Key Lab Trauma Burn & Combined, 76, Linjiang Rd, Chongqing, Peoples R China
关键词
Kaempferol; TK bond; Nanosystem; Mitochondrial homeostasis; Severe acute pancreatitis; FLAVONOIDS; INJURY;
D O I
10.1186/s12951-024-02439-y
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Kaempferol (KA), an natural antioxidant of traditional Chinese medicine (TCM), is extensively used as the primary treatment for inflammatory digestive diseases with impaired redox homeostasis. Severe acute pancreatitis (SAP) was exacerbated by mitochondrial dysfunction and abundant ROS, which highlights the role of antioxidants in targeting mitochondrial function. However, low bioavailability and high dosage of KA leading to unavoidable side effects limits clinical transformation. The mechanisms of KA with poor bioavailability largely unexplored, hindering development of the efficient strategies to maximizing the medicinal effects of KA. Here, we engineered a novel thioketals (TK)-modified based on DSPE-PEG2000 liposomal codelivery system for improving bioavailability and avoiding side effects (denotes as DSPE-TK-PEG2000-KA, DTM@KA NPs). We demonstrated that the liposome exerts profound impacts on damaging intracellular redox homeostasis by reducing GSH depletion and activating Nrf2, which synergizes with KA to reinforce the inhibition of inadequate fission, excessive mitochondrial fusion and impaired mitophagy resulting in inflammation and apoptosis; and then, the restored mitochondrial homeostasis strengthens ATP supply for PAC renovation and homeostasis. Interestingly, TK bond was proved as the main functional structure to improve the above efficacy of KA compared with the absence of TK bond. Most importantly, DTM@KA NPs obviously suppresses PAC death with negligible side effects in vitro and vivo. Mechanismly, DTM@KA NPs facilitated STAT6-regulated mitochondrial precursor proteins transport via interacting with TOM20 to further promote Drp1-dependent fission and Pink1/Parkin-regulated mitophagy with enhanced lysosomal degradation for removing damaged mitochondria in PAC and then reduce inflammation and apoptosis. Generally, DTM@KA NPs synergistically improved mitochondrial homeostasis, redox homeostasis, energy metabolism and inflammation response via regulating TOM20-STAT6-Drp1 signaling and promoting mitophagy in SAP. Consequently, such a TCM's active ingredients-based nanomedicine strategy is be expected to be an innovative approach for SAP therapy.
引用
下载
收藏
页数:15
相关论文
共 50 条
  • [31] Efficacy of mitochondria-targeted antioxidant in mice
    Bakoyiannis, Ioannis
    LAB ANIMAL, 2022, 51 (10) : 251 - 251
  • [32] From Serendipity to Mitochondria-Targeted Nanocarriers
    Weissig, Volkmar
    PHARMACEUTICAL RESEARCH, 2011, 28 (11) : 2657 - 2668
  • [33] MITOCHONDRIA-TARGETED CARDIOPROTECTION IN RATS WITH ALDOSTERONISM
    Shahbaz, A. U.
    Kamalov, G.
    Zhao, W.
    Zhao, T.
    Johnson, P. L.
    Sun, Y.
    Bhattacharya, S. K.
    Ahokas, R. A.
    Gerling, I. C.
    Weber, K. T.
    JOURNAL OF INVESTIGATIVE MEDICINE, 2011, 59 (02) : 481 - 481
  • [34] Mitochondria-targeted antioxidants: A therapeutic strategy
    Murphy, M. P.
    FREE RADICAL BIOLOGY AND MEDICINE, 2012, 53 : S9 - S10
  • [35] Tuning the Hydrophobicity of a Mitochondria-Targeted NO Photodonor
    Sodano, Federica
    Rolando, Barbara
    Spyrakis, Francesca
    Failla, Mariacristina
    Lazzarato, Loretta
    Gazzano, Elena
    Riganti, Chiara
    Fruttero, Roberta
    Gasco, Alberto
    Sortino, Salvatore
    CHEMMEDCHEM, 2018, 13 (12) : 1238 - 1245
  • [36] Syntheses and Applications of Mitochondria-Targeted Antioxidants
    Joseph, Joy
    Zielonka, Jacek
    Pacher, Pal
    Kalyanaraman, Balaraman
    FREE RADICAL BIOLOGY AND MEDICINE, 2011, 51 : S88 - S88
  • [37] MitoNeoD: A Mitochondria-Targeted Superoxide Probe
    Shchepinova, Maria M.
    Cairns, Andrew G.
    Prime, Tracy A.
    Logan, Angela
    James, Andrew M.
    Hall, Andrew R.
    Vidoni, Sara
    Arndt, Sabine
    Caldwell, Stuart T.
    Prag, Hiran A.
    Pell, Victoria R.
    Krieg, Thomas
    Mulvey, John F.
    Yadav, Pooja
    Cobley, James N.
    Bright, Thomas P.
    Senn, Hans M.
    Anderson, Robert F.
    Murphy, Michael P.
    Hartley, Richard C.
    CELL CHEMICAL BIOLOGY, 2017, 24 (10): : 1285 - +
  • [38] A Molecular Hybrid for Mitochondria-Targeted NO Photodelivery
    Sodano, Federica
    Gazzano, Elena
    Fraix, Aurore
    Rolando, Barbara
    Lazzarato, Loretta
    Russo, Marina
    Blangetti, Marco
    Riganti, Chiara
    Fruttero, Roberta
    Gasco, Alberto
    Sortino, Salvatore
    CHEMMEDCHEM, 2018, 13 (01) : 87 - 96
  • [39] Development of mitochondria-targeted derivatives of resveratrol
    Biasutto, Lucia
    Mattarei, Andrea
    Marotta, Ester
    Bradaschia, Alice
    Sassi, Nicola
    Garbisa, Spiridione
    Zoratti, Mario
    Paradisi, Cristina
    BIOORGANIC & MEDICINAL CHEMISTRY LETTERS, 2008, 18 (20) : 5594 - 5597
  • [40] Mitochondria-targeted radiocomplexes for cancer theranostics
    Fernandes, Celia
    Santos, Joana
    Braz, Maria
    Silva, Francisco
    Raposinho, Paula
    Guerreiro, Joana
    Cleeren, Frederik
    Cassells, Irwin
    Mendes, Filipa
    Paulo, Antonio
    NUCLEAR MEDICINE AND BIOLOGY, 2022, 114 : S51 - S52