A Bound-Preserving Numerical Scheme for Space-Time Fractional Advection Equations

被引:0
|
作者
Gao, Jing [1 ]
Chen, Huaiguang [1 ]
机构
[1] Shandong Jianzhu Univ, Sch Sci, Jinan 250101, Peoples R China
关键词
finite difference scheme; space-time fractional advection equation; bound-preserving; stability; DISCONTINUOUS GALERKIN METHOD; FINITE-ELEMENT-METHOD; DIFFUSION-EQUATIONS; DIFFERENCE SCHEME; PRINCIPLE; APPROXIMATIONS; SIMULATION; REGULARITY;
D O I
10.3390/fractalfract8020089
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We develop and analyze an explicit finite difference scheme that satisfies a bound-preserving principle for space-time fractional advection equations with the orders of 0<alpha and beta <= 1. The stability (and convergence) of the method is discussed. Due to the nonlocal property of the fractional operators, the numerical method generates dense coefficient matrices with complex structures. In order to increase the effectiveness of the method, we use Toeplitz-like structures in the full coefficient matrix in a sparse form to reduce the costs of computation, and we also apply a fast evaluation method for the time-fractional derivative. Therefore, an efficient solver is constructed. Numerical experiments are provided for the utility of the method.
引用
收藏
页数:20
相关论文
共 50 条
  • [21] A HIGH ORDER ACCURATE BOUND-PRESERVING COMPACT FINITE DIFFERENCE SCHEME FOR SCALAR CONVECTION DIFFUSION EQUATIONS
    Li, Hao
    Xie, Shusen
    Zhang, Xiangxiong
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2018, 56 (06) : 3308 - 3345
  • [22] A Simple Bound-Preserving Sweeping Technique for Conservative Numerical Approximations
    Yuan Liu
    Yingda Cheng
    Chi-Wang Shu
    Journal of Scientific Computing, 2017, 73 : 1028 - 1071
  • [23] A Simple Bound-Preserving Sweeping Technique for Conservative Numerical Approximations
    Liu, Yuan
    Cheng, Yingda
    Shu, Chi-Wang
    JOURNAL OF SCIENTIFIC COMPUTING, 2017, 73 (2-3) : 1028 - 1071
  • [24] Numerical approximations and solution techniques for the space-time Riesz–Caputo fractional advection-diffusion equation
    Shujun Shen
    Fawang Liu
    Vo Anh
    Numerical Algorithms, 2011, 56 : 383 - 403
  • [25] Numerical Solution of Nonlinear Space-Time Fractional-Order Advection-Reaction-Diffusion Equation
    Dwivedi, Kushal Dhar
    Rajeev
    Das, Subir
    Baleanu, Dumitru
    JOURNAL OF COMPUTATIONAL AND NONLINEAR DYNAMICS, 2020, 15 (06):
  • [26] Shifted Legendre Gauss-Lobatto collocation scheme for solving nonlinear coupled space-time fractional reaction-advection diffusion equations
    Anjuman, Manish
    Chopra, Manish
    Das, Subir
    Altenbach, Holm
    ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2024, 104 (10):
  • [27] A SPACE-TIME LEAST-SQUARE FINITE-ELEMENT SCHEME FOR ADVECTION DIFFUSION-EQUATIONS
    NGUYEN, H
    REYNEN, J
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1984, 42 (03) : 331 - 342
  • [28] Space-Time Fractional Diffusion-Advection Equation with Caputo Derivative
    Gomez Aguilar, Jose Francisco
    Miranda Hernandez, Margarita
    ABSTRACT AND APPLIED ANALYSIS, 2014,
  • [29] An analytic algorithm for the space-time fractional advection-dispersion equation
    Pandey, Ram K.
    Singh, Om P.
    Baranwal, Vipul K.
    COMPUTER PHYSICS COMMUNICATIONS, 2011, 182 (05) : 1134 - 1144
  • [30] The fundamental solution of the space-time fractional advection-dispersion equation
    Huang F.
    Liu F.
    Journal of Applied Mathematics and Computing, 2005, 18 (1-2) : 339 - 350