Into the boundary layer behavior of segmented grinding wheels and its illustration on Ti6Al4V

被引:1
|
作者
Surendran, Sarath Babu Thekkoot [1 ]
Sooraj, V. S. [1 ]
机构
[1] Indian Inst Space Sci & Technol IIST, Dept Aerosp Engn, Thiruvananthapuram 695547, India
关键词
Airflow; boundary layer; electroplated; grinding wheel; segmented; PERFORMANCE;
D O I
10.1080/10910344.2024.2311371
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Segmented grinding wheels, with active abrasive regions and passive slots, have been reported as a promising choice for controlling the grinding force via an intermittent cutting scheme. With an appropriate selection of feed and other operating variables, segmented grinding could mark its merits of improved thermal performance and grinding efficiency, typically in difficult-to-machine aerospace materials. However, the formation of a boundary layer around a rotating grinding wheel is always a barrier to effective cutting fluid delivery in the grinding zone. This article attempts to investigate the boundary layer characteristics of segmented grinding wheels, typically with a comparison of 8-segmented and 32-segmented grinding wheels with a non-porous electroplated structure and its comparison with traditional porous grinding wheel configuration. The regression model proposed in this article can predict boundary layer thickness and tangential air velocity in the grinding zone during the rotation of the wheel. A closer look at flow aspects has been covered using computational fluid flow modeling/simulation, followed by experimental assessments through particle image velocimetry and shadowgraphs. The influence of segmentation and its configuration (typically the number of segments) have been illustrated through a case study of wet grinding on Ti6Al4V.
引用
收藏
页码:267 / 298
页数:32
相关论文
共 50 条
  • [21] Nitriding Behavior of Ti6Al4V Alloy in Gas Atmosphere
    Siyahjani, Farid
    Atar, Erdem
    TMS 2014 SUPPLEMENTAL PROCEEDINGS, 2014, : 197 - 203
  • [22] Deformation behavior and microstructure of Ti6Al4V manufactured by SLM
    Krakhmalev, P.
    Fredriksson, G.
    Yadroitsava, I.
    Kazantseva, N.
    du Plessis, A.
    Yadroitsev, I.
    LASER ASSISTED NET SHAPE ENGINEERING 9 INTERNATIONAL CONFERENCE ON PHOTONIC TECHNOLOGIES PROCEEDINGS OF THE LANE 2016, 2016, 83 : 778 - 788
  • [23] In vitro corrosion behavior and biocompatibility of nanostructured Ti6Al4V
    Huo, W. T.
    Zhao, L. Z.
    Zhang, W.
    Lu, J. W.
    Zhao, Y. Q.
    Zhang, Y. S.
    MATERIALS SCIENCE AND ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS, 2018, 92 : 268 - 279
  • [24] Tribological behavior of molybdenum alloying layer on Ti6Al4V by double glow discharge technique
    Li, Xiu-Yan
    Fan, Ai-Lan
    Tang, Bin
    Pan, Jun-De
    Liu, Dao-Xin
    Huang, He
    Xu, Zhong
    Mocaxue Xuebao/Tribology, 2003, 23 (02): : 108 - 111
  • [25] Tribology of Ti6Al4V: A review
    Jibin T Philip
    Jose Mathew
    Basil Kuriachen
    Friction, 2019, 7 : 497 - 536
  • [26] Tribology of Ti6Al4V: A review
    Jibin T PHILIP
    Jose MATHEW
    Basil KURIACHEN
    Friction, 2019, 7 (06) : 497 - 536
  • [27] Tribology of Ti6Al4V: A review
    Philip, Jibin T.
    Mathew, Jose
    Kuriachen, Basil
    FRICTION, 2019, 7 (06) : 497 - 536
  • [28] Study of the Effect of Nanosecond Laser Texturing on the Corrosion Behavior of Ti6Al4V and Ti6Al4V Parts Produced by Powder Bed Fusion
    Queiroz, Fernanda Martins
    Ribeiro, Gleicy de Lima Xavier
    de Castro, Renato Spacini
    dos Santos, Rogerio Goes
    Vieira, Alexandre
    Terada, Maysa
    Bugarin, Aline de Fatima Santos
    de Rossi, Wagner
    Costa, Isolda
    MATERIALS PERFORMANCE AND CHARACTERIZATION, 2023, 12 (03)
  • [29] Fretting characters of molybdenum nitride layer on Ti6Al4V alloy
    Qin, Lin
    Fan, Ailan
    Wu, Peiqiang
    Tang, Bin
    Xu, Zhong
    Xiyou Jinshu Cailiao Yu Gongcheng/Rare Metal Materials and Engineering, 2006, 35 (07): : 1053 - 1056
  • [30] Microstructure and properties of gradient nitrided layer on Ti6Al4V alloys
    Yang, Feng
    Li, Kun-Mao
    Liu, Xing-Jun
    Sun, Hong
    Wang, Cui-Ping
    RARE METALS, 2023, 42 (02) : 651 - 663