An Optimal Solution to Infinite Horizon Nonlinear Control Problems

被引:0
|
作者
Mohamed, Mohamed Naveed Gul [1 ]
Goyal, Raman [1 ]
Chakravorty, Suman [1 ]
机构
[1] Texas A&M Univ, Dept Aerosp Engn, College Stn, TX 77843 USA
关键词
Nonlinear control; Infinite horizon optimal control; Control Lyapunov function; MODEL-PREDICTIVE CONTROL;
D O I
10.1109/CDC49753.2023.10384307
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we consider the infinite horizon optimal control problem for nonlinear systems. Under the conditions of controllability of the linearized system around the origin, and nonlinear controllability of the system to a terminal set containing the origin, we establish an approximate regularized solution approach consisting of a "finite free final time" optimal transfer problem to the terminal set, and an infinite horizon linear regulation problem within the terminal set, that is shown to render the origin globally asymptotically stable. Further, we show that the approximations converge to the true optimal cost function as the size of the terminal set decreases to zero. The approach is empirically evaluated on the pendulum and cart-pole swing-up problems to show that the finite time transfer is far shorter than the effective horizon required to solve the infinite horizon problem without the proposed regularization.
引用
收藏
页码:1643 / 1648
页数:6
相关论文
共 50 条
  • [21] Solving infinite horizon nonlinear optimal control problems using an extended modal series method
    Amin Jajarmi
    Naser Pariz
    Sohrab Effati
    Ali Vahidian Kamyad
    Journal of Zhejiang University SCIENCE C, 2011, 12 : 667 - 677
  • [22] Solving infinite horizon nonlinear optimal control problems using an extended modal series method
    Amin JAJARMI
    Naser PARIZ
    Sohrab EFFATI
    Ali VAHIDIAN KAMYAD
    JournalofZhejiangUniversity-ScienceC(Computers&Electronics), 2011, 12 (08) : 667 - 677
  • [23] Solving infinite horizon nonlinear optimal control problems using an extended modal series method
    Amin JAJARMI
    Naser PARIZ
    Sohrab EFFATI
    Ali VAHIDIAN KAMYAD
    Frontiers of Information Technology & Electronic Engineering, 2011, (08) : 667 - 677
  • [24] An indirect pseudospectral method for the solution of linear-quadratic optimal control problems with infinite horizon
    Pickenhain, S.
    Burtchen, A.
    Kolo, K.
    Lykina, V.
    OPTIMIZATION, 2016, 65 (03) : 609 - 633
  • [25] On the value function for nonautonomous optimal control problems with infinite horizon
    Baumeister, J.
    Leitao, A.
    Silva, G. N.
    SYSTEMS & CONTROL LETTERS, 2007, 56 (03) : 188 - 196
  • [26] Optimal control in infinite horizon problems: a Sobolev space approach
    Le Van, Cuong
    Boucekkine, Raouf
    Saglam, Cagri
    ECONOMIC THEORY, 2007, 32 (03) : 497 - 509
  • [27] Pseudospectral method for fractional infinite horizon optimal control problems
    Yang, Yin
    Noori Skandari, M. H.
    OPTIMAL CONTROL APPLICATIONS & METHODS, 2020, 41 (06): : 2201 - 2212
  • [28] On Sufficient Optimality Conditions for Infinite Horizon Optimal Control Problems
    Anton O. Belyakov
    Proceedings of the Steklov Institute of Mathematics, 2020, 308 : 56 - 66
  • [29] Stochastic Linear Quadratic Optimal Control Problems in Infinite Horizon
    Jingrui Sun
    Jiongmin Yong
    Applied Mathematics & Optimization, 2018, 78 : 145 - 183
  • [30] State and Time Transformations of Infinite Horizon Optimal Control Problems
    Wenzke, Diana
    Lykina, Valeriya
    Pickenhain, Sabine
    VARIATIONAL AND OPTIMAL CONTROL PROBLEMS ON UNBOUNDED DOMAIN, 2014, 619 : 189 - 208