High-rate sodium-ion storage of vanadium nitride via surface-redox pseudocapacitance

被引:22
|
作者
Wei, Qiulong [1 ]
Huang, Tingyi [1 ]
Huang, Xiaojuan [1 ]
Wang, Binhao [1 ]
Jiang, Yalong [2 ]
Tang, Dafu [1 ]
Peng, Dong-Liang [1 ]
Dunn, Bruce [3 ]
Mai, Liqiang [2 ]
机构
[1] Xiamen Univ, Dept Mat Sci & Engn, Coll Mat, Fujian Key Lab Surface & Interface Engn High Perf, Xiamen 361005, Peoples R China
[2] Wuhan Univ Technol, State Key Lab Adv Technol Mat Synth & Proc, Wuhan 430070, Peoples R China
[3] Univ Calif Los Angeles, Dept Mat Sci & Engn, Los Angeles, CA USA
来源
INTERDISCIPLINARY MATERIALS | 2023年 / 2卷 / 03期
基金
中国国家自然科学基金;
关键词
high-rate capability; pseudocapacitance; sodium-ion storage; vanadium nitride; LITHIUM STORAGE; GRAPHENE; COMPOSITE;
D O I
10.1002/idm2.12080
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Vanadium nitride (VN) electrode displays high-rate, pseudocapacitive responses in aqueous electrolytes, however, it remains largely unclear in nonaqueous, Na+-based electrolytes. The traditional view supposes a conversion-type mechanism for Na+ storage in VN anodes but does not explain the phenomena of their size-dependent specific capacities and underlying causes of pseudocapacitive charge storage behaviors. Herein, we insightfully reveal the VN anode exhibits a surface-redox pseudocapacitive mechanism in nonaqueous, Na+-based electrolytes, as demonstrated by kinetics analysis, experimental observations, and first-principles calculations. Through ex situ X-ray photoelectron spectroscopy and semiquantitative analyses, the Na+ storage is characterized by redox reactions occurring with the V5+/V4+ to V3+ at the surface of VN particles, which is different from the well-known conversion reaction mechanism. The pseudocapacitive performance is enhanced through nanoarchitecture design via oxidized vanadium states at the surface. The optimized VN-10nm anode delivers a sodium-ion storage capability of 106mAhg(-1) at the high specific current of 20Ag(-1), and excellent cycling performance of 5000 cycles with negligible capacity losses. This work demonstrates the emerging opportunities of utilizing pseudocapacitive charge storage for realizing high-rate sodium-ion storage applications.
引用
收藏
页码:434 / 442
页数:9
相关论文
共 50 条
  • [21] Tunable pseudocapacitance storage of MXene by cation pillaring for high performance sodium-ion capacitors
    Luo, Jianmin
    Fang, Cong
    Jin, Chengbin
    Yuan, Huadong
    Sheng, Ouwei
    Fang, Ruyi
    Zhang, Wenkui
    Huang, Hui
    Gan, Yongping
    Xia, Yang
    Liang, Chu
    Zhang, Jun
    Li, Weiyang
    Tao, Xinyong
    JOURNAL OF MATERIALS CHEMISTRY A, 2018, 6 (17) : 7794 - 7806
  • [22] Sodium Vanadium Fluorophosphates (NVOPF) Array Cathode Designed for High-Rate Full Sodium Ion Storage Device
    Chao, Dongliang
    Lai, Chun-Han
    Liang, Pei
    Wei, Qiulong
    Wang, Yue-Sheng
    Zhu, Changrong
    Deng, Gang
    Doan-Nguyen, Vicky V. T.
    Lin, Jianyi
    Mai, Liqiang
    Fan, Hong Jin
    Dunn, Bruce
    Shen, Ze Xiang
    ADVANCED ENERGY MATERIALS, 2018, 8 (16)
  • [23] Beyond conventional sodium-ion storage mechanisms: a combinational intercalation/conversion reaction mechanism in Ni-ion modified hydrated vanadate for high-rate sodium-ion storage
    Huang, Haijian
    Wei, Li
    Tian, Tian
    Cao, Taoding
    Cheng, Feng
    Chen, Zhangxian
    Yang, Zeheng
    Ge, Binghui
    Tian, Mingliang
    Zhang, Weixin
    Niederberger, Markus
    ENERGY STORAGE MATERIALS, 2022, 47 : 579 - 590
  • [24] Surface Redox Pseudocapacitance Boosting Vanadium Nitride for High-power and Ultra-stable Potassium-Ion Capacitors
    Xu, Chengrong
    Mu, Jinglin
    Zhou, Tong
    Tian, Shuang
    Gao, Peibo
    Yin, Guangchao
    Zhou, Jin
    Li, Feng
    ADVANCED FUNCTIONAL MATERIALS, 2022, 32 (38)
  • [25] Phase Engineering of MXene Derivatives Via Molecular Design for High-Rate Sodium-Ion Batteries
    Zhang, Hui
    Zhai, Xingwu
    Cao, Xin
    Liu, Zhihao
    Tang, Xinfeng
    Hu, Zhihong
    Wang, Hang
    Wang, Zhandong
    Xu, Yang
    He, Wei
    Zheng, Wei
    Zhou, Min
    Sun, Zhengming
    ENERGY & ENVIRONMENTAL MATERIALS, 2024, 7 (05)
  • [26] Phase Engineering of MXene Derivatives Via Molecular Design for High-Rate Sodium-Ion Batteries
    Hui Zhang
    Xingwu Zhai
    Xin Cao
    Zhihao Liu
    Xinfeng Tang
    Zhihong Hu
    Hang Wang
    Zhandong Wang
    Yang Xu
    Wei He
    Wei Zheng
    Min Zhou
    Zheng Ming Sun
    Energy & Environmental Materials, 2024, 7 (05) : 126 - 134
  • [27] Elastic Buffering Layer on CuS Enabling High-Rate and Long-Life Sodium-Ion Storage
    Yuanhua Xiao
    Feng Yue
    Ziqing Wen
    Ya Shen
    Dangcheng Su
    Huazhang Guo
    Xianhong Rui
    Liming Zhou
    Shaoming Fang
    Yan Yu
    Nano-Micro Letters, 2022, 14 (12) : 35 - 47
  • [28] Elastic Buffering Layer on CuS Enabling High-Rate and Long-Life Sodium-Ion Storage
    Xiao, Yuanhua
    Yue, Feng
    Wen, Ziqing
    Shen, Ya
    Su, Dangcheng
    Guo, Huazhang
    Rui, Xianhong
    Zhou, Liming
    Fang, Shaoming
    Yu, Yan
    NANO-MICRO LETTERS, 2022, 14 (01)
  • [29] SnSe2 Nanoparticles Chemically Embedded in a Carbon Shell for High-Rate Sodium-Ion Storage
    Zhang, Fen
    Shen, Yu
    Shao, Meng
    Zhang, Yongcai
    Zheng, Bing
    Wu, Jiansheng
    Zhang, Weina
    Zhu, Aiping
    Huo, Fengwei
    Li, Sheng
    ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (02) : 2346 - 2353
  • [30] Intercalation pseudocapacitance of sodium-ion storage in TiO2(B)
    Zou, Xia
    Yan, Zerui
    Tang, Dafu
    Fan, Sicheng
    Peng, Dong-Liang
    Jiang, Yalong
    Wei, Qiulong
    JOURNAL OF MATERIALS CHEMISTRY A, 2024, 12 (23) : 13770 - 13777