Formulations for the maximum common edge subgraph problem

被引:1
|
作者
de Gastines, Etienne [1 ]
Knippel, Arnaud [1 ]
机构
[1] Normandie Univ, INSA Rouen Normandie, LMI UR 3226, F-76000 Rouen, France
关键词
Maximum common subgraph; Graph matching; 0-1; programming;
D O I
10.1016/j.dam.2023.11.044
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The Maximum Common Edge Subgraph Problem (MCES), given two graphs G and H, asks about finding a maximum common subgraph between those two graphs with a maximal number of edges. We present new integer programming formulations for MCES and compare the performances of those formulations with earlier formulations from the literature.(c) 2023 Elsevier B.V. All rights reserved.
引用
收藏
页码:115 / 130
页数:16
相关论文
共 50 条
  • [21] Hybrid Learning with New Value Function for the Maximum Common Induced Subgraph Problem
    Liu, Yanli
    Zhao, Jiming
    Li, Chu-Min
    Jiang, Hua
    He, Kun
    THIRTY-SEVENTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 37 NO 4, 2023, : 4044 - 4051
  • [22] Heuristics for similarity searching of chemical graphs using a maximum common edge subgraph algorithm
    Raymond, JW
    Gardiner, EJ
    Willett, P
    JOURNAL OF CHEMICAL INFORMATION AND COMPUTER SCIENCES, 2002, 42 (02): : 305 - 316
  • [23] On the complexity of the maximum biplanar subgraph problem
    Yu, CW
    INFORMATION SCIENCES, 2000, 129 (1-4) : 239 - 250
  • [24] Maximum weight archipelago subgraph problem
    Hammer, Peter L.
    Majlender, Peter
    Simeone, Bruno
    Vizvari, Bela
    ANNALS OF OPERATIONS RESEARCH, 2014, 217 (01) : 253 - 262
  • [25] Maximum weight archipelago subgraph problem
    Peter L. Hammer
    Péter Majlender
    Bruno Simeone
    Béla Vizvári
    Annals of Operations Research, 2014, 217 : 253 - 262
  • [26] Heuristics for the maximum outerplanar subgraph problem
    Poranen, T
    JOURNAL OF HEURISTICS, 2005, 11 (01) : 59 - 88
  • [27] Parameterized Complexity of Maximum Edge Colorable Subgraph
    Akanksha Agrawal
    Madhumita Kundu
    Abhishek Sahu
    Saket Saurabh
    Prafullkumar Tale
    Algorithmica, 2022, 84 : 3075 - 3100
  • [28] APPROXIMATIONS FOR THE MAXIMUM ACYCLIN SUBGRAPH PROBLEM
    HASSIN, R
    RUBINSTEIN, S
    INFORMATION PROCESSING LETTERS, 1994, 51 (03) : 133 - 140
  • [29] Heuristics for the Maximum Outerplanar Subgraph Problem
    Timo Poranen
    Journal of Heuristics, 2005, 11 : 59 - 88
  • [30] Parameterized Complexity of Maximum Edge Colorable Subgraph
    Agrawal, Akanksha
    Kundu, Madhumita
    Sahu, Abhishek
    Saurabh, Saket
    Tale, Prafullkumar
    ALGORITHMICA, 2022, 84 (10) : 3075 - 3100