Mathematical Modeling of Non-Small-Cell Lung Cancer Biology through the Experimental Data on Cell Composition and Growth of Patient-Derived Organoids

被引:3
|
作者
Sulimanov, Rushan [1 ]
Koshelev, Konstantin [1 ,2 ]
Makarov, Vladimir [1 ]
Mezentsev, Alexandre [1 ,3 ]
Durymanov, Mikhail [1 ,3 ]
Ismail, Lilian [3 ]
Zahid, Komal [3 ]
Rumyantsev, Yegor [1 ]
Laskov, Ilya [1 ]
机构
[1] Yaroslav The Wise Novgorod State Univ, Med Informat Lab, Veliky Novgorod 173003, Russia
[2] Russian Acad Sci, Ivannikov Inst Syst Programming, Moscow 109004, Russia
[3] Moscow Inst Phys & Technol, Sch Biol & Med Phys, Dolgoprudnyi 141701, Russia
来源
LIFE-BASEL | 2023年 / 13卷 / 11期
关键词
mathematical modeling; non-small-cell lung cancer; flow cytometry; cell composition; tumor-associated macrophages; cytotoxic T-lymphocytes; adenocarcinoma; cancer cells; cancer-associated fibroblasts; EXPRESSION;
D O I
10.3390/life13112228
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Mathematical models of non-small-cell lung cancer are powerful tools that use clinical and experimental data to describe various aspects of tumorigenesis. The developed algorithms capture phenotypic changes in the tumor and predict changes in tumor behavior, drug resistance, and clinical outcomes of anti-cancer therapy. The aim of this study was to propose a mathematical model that predicts the changes in the cellular composition of patient-derived tumor organoids over time with a perspective of translation of these results to the parental tumor, and therefore to possible clinical course and outcomes for the patient. Using the data on specific biomarkers of cancer cells (PD-L1), tumor-associated macrophages (CD206), natural killer cells (CD8), and fibroblasts (alpha SMA) as input, we proposed a model that accurately predicts the cellular composition of patient-derived tumor organoids at a desired time point. Combining the obtained results with "omics" approaches will improve our understanding of the nature of non-small-cell lung cancer. Moreover, their implementation into clinical practice will facilitate a decision-making process on treatment strategy and develop a new personalized approach in anti-cancer therapy.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Deciphering fibroblast-induced drug resistance in non-small cell lung carcinoma through patient-derived organoids in agarose microwells
    Luan, Qiyue
    Pulido, Ines
    Isagirre, Angelique
    Carretero, Julian
    Zhou, Jian
    Shimamura, Takeshi
    Papautsky, Ian
    LAB ON A CHIP, 2024, 24 (07) : 2025 - 2038
  • [22] Phenotype Mapping of Patient-Derived Small Cell Lung Cancer Organoids Illuminate Subtype-Specific Therapeutic Vulnerability
    Fukushima, T.
    Yasuda, H.
    Terai, H.
    Hamamoto, J.
    Okada, M.
    Saito, A.
    Takaoka, H.
    Ito, F.
    Shigematsu, L.
    Nukaga, S.
    Ohgino, K.
    Ikemura, S.
    Kawada, I.
    Soejima, K.
    Fukunaga, K.
    Sato, T.
    JOURNAL OF THORACIC ONCOLOGY, 2023, 18 (11) : S195 - S195
  • [23] Screening non-small cell lung cancer patient-derived organoids with epigenetic probes reveals PRMT5 as an oncogenic target
    Jafarova, Khadija
    Li, Quan
    Radulovich, Nikolina
    Liu, Geoffrey
    Tsao, Ming S.
    MOLECULAR CANCER THERAPEUTICS, 2024, 23 (06)
  • [24] Amrubicin for non-small-cell lung cancer and small-cell lung cancer
    Kurata, Takayasu
    Okamoto, Isamu
    Tamura, Kenji
    Fukuoka, Masahiro
    INVESTIGATIONAL NEW DRUGS, 2007, 25 (05) : 499 - 504
  • [25] Amrubicin for non-small-cell lung cancer and small-cell lung cancer
    Takayasu Kurata
    Isamu Okamoto
    Kenji Tamura
    Masahiro Fukuoka
    Investigational New Drugs, 2007, 25 : 499 - 504
  • [26] Patient-derived renal cell carcinoma organoids for personalized cancer therapy
    Li, Zhichao
    Xu, Haibo
    Yu, Lei
    Wang, Jia
    Meng, Qian
    Mei, Hongbing
    Cai, Zhiming
    Chen, Wei
    Huang, Weiren
    CLINICAL AND TRANSLATIONAL MEDICINE, 2022, 12 (07):
  • [27] Utility of patient-derived xenografts to evaluate drug sensitivity and select optimal treatments for individual non-small-cell lung cancer patients
    Wang, Xiaoqing
    Zhu, Ju
    Li, Lingling
    Zhao, Qilin
    Huang, Yutang
    Wen, Chunjie
    Chen, Dan
    Wu, Lanxiang
    MOLECULAR MEDICINE, 2024, 30 (01)
  • [28] Patient-derived Xenograft Models of Small Cell Lung Cancer for Therapeutic Development
    Vidhyasagar, V.
    Ul Haq, S.
    Lok, B. H.
    CLINICAL ONCOLOGY, 2020, 32 (10) : 619 - 625
  • [29] Genomic and Functional Fidelity of Small Cell Lung Cancer Patient-Derived Xenografts
    Drapkin, Benjamin J.
    George, Julie
    Christensen, Camilla L.
    Mino-Kenudson, Mari
    Dries, Ruben
    Sundaresan, Tilak
    Phat, Sarah
    Myers, David T.
    Zhong, Jun
    Igo, Peter
    Hazar-Rethinam, Mehlika H.
    Licausi, Joseph A.
    Gomez-Caraballo, Maria
    Kem, Marina
    Jani, Kandarp N.
    Azimi, Roxana
    Abedpour, Nima
    Menon, Roopika
    Lakis, Sotirios
    Heist, Rebecca S.
    Buettner, Reinhard
    Haas, Stefan
    Sequist, Lecia V.
    Shaw, Alice T.
    Wong, Kwok-Kin
    Hata, Aaron N.
    Toner, Mehmet
    Maheswaran, Shyamala
    Haber, Daniel A.
    Peifer, Martin
    Dyson, Nicholas
    Thomas, Roman K.
    Farago, Anna F.
    CANCER DISCOVERY, 2018, 8 (05) : 600 - 615
  • [30] Nelfinavir Inhibits the Growth of Small-cell Lung Cancer Cells and Patient-derived Xenograft Tumors
    Kawabata, Shigeru
    Connis, Nick
    Gills, Joell J.
    Hann, Christine L.
    Dennis, Phillip A.
    ANTICANCER RESEARCH, 2021, 41 (01) : 91 - 99