Enhanced gas sensing property of Co3O4 matrix nanocomposites with halloysite nanotubes toward triethylamine

被引:19
|
作者
Fan, Jie [1 ]
Yang, Chao [1 ,2 ]
Zhao, Xueying [1 ]
Li, Dan [1 ]
Xiao, Feng [1 ]
Wu, Ronglan [1 ,2 ]
Wang, Lu [1 ,2 ]
机构
[1] Xinjiang Univ, Sch Chem Engn, Key Lab Oil & Gas Fine Chem, Minist Educ & Xinjiang Uygur Autonomous Reg, Urumqi 830017, Peoples R China
[2] Xinjiang Univ, State Key Lab Chem & Utilization Carbon Based Ene, Urumqi, Peoples R China
基金
中国国家自然科学基金;
关键词
Gas sensors; Nanocomposite; P-type metal oxide; Clay; Volatile organic compounds; SENSORS; NANOPARTICLES; PERFORMANCE; TEMPERATURE; COMPOSITES; NANOFLAKES; NANOSHEETS; MECHANISM; CATALYSTS; HUMIDITY;
D O I
10.1016/j.jmrt.2023.01.142
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Despite their high surface reactivity, the gas sensor based on Co3O4 nanoparticles frequently suffers from a low response to volatile organic compounds (VOCs) due to high-temperature sintering and inefficient resistance modulation. Herein, halloysite nanotubes (HNTs) were incorporated as the additive into the Co3O4 nanoparticle matrix to enhance the sensing property toward VOCs in terms of gas response (Rg/Ra) and operation stability. Co3O4 nanoparticles intimately attached on HNTs were achieved by a facile deposition-precipitation method followed by calcination. The best-performing Co3O4/0.3HNTs-based sensor had a high gas response of 22.9 to 50 ppm triethylamine at 240 degrees C, which was 4.9 times than that of Co3O4 alone. The enhanced sensitivity could be attributed to the HNT incorporation that facilitated effective resistance modulation, surface property tuning, as well as surface defect formation. These results bring new insight into an enhancement of gas sensing property of a p-type metal oxide with insensitive materials. They also provide a potential to expand the application of aluminosilicate clays to gas sensors. (c) 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
引用
收藏
页码:2491 / 2503
页数:13
相关论文
共 50 条
  • [21] Facile construction of Co3O4 porous microspheres with enhanced acetone gas sensing performances
    Cao, Jing
    Wang, Shuangming
    Zhang, Haiming
    Zhang, Tong
    MATERIALS SCIENCE IN SEMICONDUCTOR PROCESSING, 2019, 101 : 10 - 15
  • [22] Vapor Phase Synthesis, Characterization and Gas Sensing Performances of Co3O4 and Au/Co3O4 Nanosystems
    Barreca, Davide
    Comini, Elisabetta
    Gasparotto, Alberto
    Maccato, Chiara
    Pozza, Andrea
    Sada, Cinzia
    Sberveglieri, Giorgio
    Tondello, Eugenio
    JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2010, 10 (12) : 8054 - 8061
  • [23] Ag/Co3O4 nanocomposites from ZIF-67 MOF for enhanced low-temperature toluene gas sensing
    Wu, W.J.
    Hong, Bo
    Xu, Jingcai
    Peng, Xiaoling
    Li, Jing
    Chen, Hongwei
    Qiu, Shi
    Zhang, Nan
    Wang, Xinqing
    Physica E: Low-Dimensional Systems and Nanostructures, 2025, 167
  • [24] Preparation of Nanostructured Co3O4 and Ru-Doped Co3O4 and Their Applicability in Liquefied Petroleum Gas Sensing
    Prabhat Kumar Singh
    Neetu Singh
    Mridula Singh
    Poonam Tandon
    Saurabh Kumar Singh
    Journal of Materials Engineering and Performance, 2019, 28 : 7592 - 7601
  • [25] Preparation of Nanostructured Co3O4 and Ru-Doped Co3O4 and Their Applicability in Liquefied Petroleum Gas Sensing
    Singh, Prabhat Kumar
    Singh, Neetu
    Singh, Mridula
    Tandon, Poonam
    Singh, Saurabh Kumar
    JOURNAL OF MATERIALS ENGINEERING AND PERFORMANCE, 2019, 28 (12) : 7592 - 7601
  • [26] Construction of C-N/SnO2/Co3O4 microspheres with improvable electronic transmission for enhanced triethylamine gas-sensing performance
    Li, Hang
    Guo, Jia
    Chu, Shushu
    Li, Hui
    Zhang, Qi
    Lin, Ziqiong
    Ma, Qian
    PHYSICS LETTERS A, 2021, 387
  • [27] ROOM TEMPERATURE AMMONIA GAS SENSING CHARACTERISTICS OF Co3O4
    Shelke, P. N.
    Jadkar, S. R.
    Khollam, Y. B.
    Chakane, S. D.
    Adsool, A. D.
    Mohite, K. C.
    JOURNAL OF NANO- AND ELECTRONIC PHYSICS, 2011, 3 (01) : 859 - 867
  • [28] Gas sensing properties of AACVD-derived ZnO/Co3O4 bilayer thin film nanocomposites
    Mokrushin, Artem S.
    Gorban, Yulia M.
    Averin, Aleksey A.
    Gorobtsov, Philipp Yu.
    Simonenko, Nikolay P.
    Simonenko, Elizaveta P.
    Kuznetsov, Nikolay T.
    CERAMICS INTERNATIONAL, 2024, 50 (06) : 8777 - 8789
  • [29] MOF-derived porous ZnO/Co3O4 nanocomposites for high performance acetone gas sensing
    Xiao, Jia
    Diao, Kaidi
    Zheng, Zhou
    Cui, Xudong
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2018, 29 (10) : 8535 - 8546
  • [30] MOF-derived porous ZnO/Co3O4 nanocomposites for high performance acetone gas sensing
    Jia Xiao
    Kaidi Diao
    Zhou Zheng
    Xudong Cui
    Journal of Materials Science: Materials in Electronics, 2018, 29 : 8535 - 8546