Estimating the neutron yield in a deuterium plasma with the JET neutron camera

被引:1
|
作者
Hagg, Linus [1 ]
Binda, Federico [2 ]
Conroy, Sean [1 ]
Ericsson, Goeran [1 ]
Ghani, Zamir [3 ]
Giacomelli, Luca [4 ]
Marocco, Daniele [5 ]
Milocco, Alberto [6 ]
Riva, Marco [5 ]
Sunden, Erik Andersson [1 ]
JET Contributors
机构
[1] Uppsala Univ, Dept Phys & Astron, SE-75105 Uppsala, Sweden
[2] Oversattravagen 17, S-18470 Akersberga, Stockholms Lan, Sweden
[3] Culham Sci Ctr, United Kingdom Atom Energy Author, Abingdon OX14 3DB, Oxon, England
[4] European Commiss, Joint Res Ctr, I-21027 Ispra, VA, Italy
[5] ENEA, Fus & Technol Nucl Safety & Secur Dept, CR Frascati, Via E Fermi 45, I-00044 Rome, Italy
[6] Univ Milan, Bicocca Univ, Phys Dept G Occhialini, Milan, Italy
来源
REVIEW OF SCIENTIFIC INSTRUMENTS | 2023年 / 94卷 / 07期
关键词
DIAGNOSTICS; PROFILES;
D O I
10.1063/5.0144654
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
The JET neutron camera is a well-established detector system at JET, which has 19 sightlines each equipped with a liquid scintillator. The system measures a 2D profile of the neutron emission from the plasma. A first principle physics method is used to estimate the DD neutron yield that is based on JET neutron camera measurements and is independent of other neutron measurements. This paper details the data reduction techniques, models of the neutron camera, simulations of neutron transport, and detector responses used to this end. The estimate uses a simple parameterized model of the neutron emission profile. The method makes use of the JET neutron camera's upgraded data acquisition system. It also accounts for neutron scattering near the detectors and transmission through the collimator. These components together contribute to 9% of the detected neutron rate above a 0.5 MeVee energy threshold. Despite the simplicity of the neutron emission profile model, the DD neutron yield estimate falls on average within 10% agreement with a corresponding estimate from the JET fission chambers. The method can be improved by considering more advanced neutron emission profiles. It can also be expanded to estimate the DT neutron yield with the same methodology.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] Calculations to support JET neutron yield calibration: Contributions to the external neutron monitor responses
    Snoj, Luka
    Syme, Brian
    Popovichev, Sergey
    Lengar, Igor
    Conroy, Sean
    NUCLEAR ENGINEERING AND DESIGN, 2012, 246 : 191 - 197
  • [22] A parametric model for fusion neutron emissivity tomography for the KN3 neutron camera at JET
    Ronchi, E.
    Conroy, S.
    Sunden, E. Andersson
    Ericsson, G.
    Johnson, M. Gatu
    Hellesen, C.
    Sjostrand, H.
    Weiszflog, M.
    NUCLEAR FUSION, 2010, 50 (03)
  • [23] Understanding Neutron Production in the Deuterium Dense Plasma Focus
    Appelbe, Brian
    Chittenden, Jeremy
    9TH INTERNATIONAL CONFERENCE ON DENSE Z PINCHES, 2014, 1639 : 9 - 14
  • [24] A Neutron Activation Method of Deuterium–Tritium Plasma Diagnostics
    P. L. Usenko
    V. V. Gaganov
    D. A. Molodtsev
    Plasma Physics Reports, 2020, 46 : 29 - 34
  • [25] Investigation of the Neutron Angular Distribution and Neutron Yield on the APF Plasma Focus Device
    Baghdadi, R.
    Amrollahi, R.
    Habibi, M.
    Etaati, G. R.
    JOURNAL OF FUSION ENERGY, 2011, 30 (01) : 72 - 77
  • [26] Investigation of the Neutron Angular Distribution and Neutron Yield on the APF Plasma Focus Device
    R. Baghdadi
    R. Amrollahi
    M. Habibi
    G. R. Etaati
    Journal of Fusion Energy, 2011, 30 : 72 - 77
  • [27] Comparison of deconvolution techniques for 1D neutron emission profile reconstruction using ITER Radial Neutron Camera synthetic data and JET neutron camera measurements
    Mikszuta-Michalik, Katarzyna
    Marocco, Daniele
    Esposito, Basilio
    JET Contributors
    PLASMA PHYSICS AND CONTROLLED FUSION, 2025, 67 (04)
  • [28] Neutron Yield Scaling With Inductance in Plasma Focus
    Karami, Fereshteh
    Roshan, Mahmud V.
    Habibi, Morteza
    Asadnejad, Reza
    Lee, Paul
    Saw, SorHeoh
    Lee, Sing
    IEEE TRANSACTIONS ON PLASMA SCIENCE, 2015, 43 (07) : 2155 - 2159
  • [29] Plasma Temperature Inference from Deuterium-Tritium/Deuterium-Deuterium Neutron Discrimination
    Katz, J. I.
    NUCLEAR SCIENCE AND ENGINEERING, 2015, 180 (01) : 117 - 122
  • [30] Generation of a plasma neutron source for Monte Carlo neutron transport calculations in the tokamak JET
    Stancar, Ziga
    Gorelenkova, Marina
    Conroy, Sean
    Eriksson, Jacob
    Buchanan, James
    Snoj, Luka
    Abduallev, S.
    Abhangi, M.
    Abreu, P.
    Afzal, M.
    Aggarwal, K. M.
    Ahlgren, T.
    Ahn, J. H.
    Aho-Mantila, L.
    Aiba, N.
    Airila, M.
    Albanese, R.
    Aldred, V.
    Alegre, D.
    Alessi, E.
    Aleynikov, P.
    Alfier, A.
    Alkseev, A.
    Allinson, M.
    Alper, B.
    Alves, E.
    Ambrosino, G.
    Ambrosino, R.
    Amicucci, L.
    Amosov, V.
    Sunden, E. Andersson
    Angelone, M.
    Anghel, M.
    Angioni, C.
    Appel, L.
    Appelbee, C.
    Arena, P.
    Ariola, M.
    Arnichand, H.
    Arshad, S.
    Ash, A.
    Ashikawa, N.
    Aslanyan, V.
    Asunta, O.
    Auriemma, F.
    Austin, Y.
    Avotina, L.
    Axton, M. D.
    Ayres, C.
    Bacharis, M.
    FUSION ENGINEERING AND DESIGN, 2018, 136 : 1047 - 1051