M2 macrophage-derived exosomes carry miR-142-3p to restore the differentiation balance of irradiated BMMSCs by targeting TGF-β1

被引:4
|
作者
Huang, Chong [1 ]
Zhao, Lu [2 ]
Xiao, Yun [3 ]
Tang, Zihao [2 ]
Jing, Li [2 ]
Guo, Kai [2 ]
Tian, Lei [2 ]
Zong, Chunlin [2 ]
机构
[1] Northwest Univ, Coll Life Sci, Key Lab Biotechnol Shaanxi Prov, 229 Taibai North Rd, Xian 710069, Peoples R China
[2] Fourth Mil Med Univ, Natl Clin Res Ctr Oral Dis, Shaanxi Clin Res Ctr Oral Dis, Sch Stomatol,Dept Oral & Maxillofacial Surg,State, 145 West Changle Rd, Xian 710032, Peoples R China
[3] Jiamusi Univ, Sch Stomatol, 522 Hongqi St, Jiamusi 154000, Peoples R China
基金
中国国家自然科学基金;
关键词
Bone marrow mesenchymal stem cells; Macrophages; Exosomes; miRNAs; Irradiation-induced bone damage; MESENCHYMAL STEM-CELLS; OSTEOGENIC DIFFERENTIATION; BONE; RADIATION; INJURY; FIBROSIS;
D O I
10.1007/s11010-023-04775-3
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Radiotherapy is essential to cancer treatment, while it inevitably injures surrounding normal tissues, and bone tissue is one of the most common sites prone to irradiation. Bone marrow mesenchymal stem cells (BMMSCs) are sensitive to irradiation and the irradiated dysfunction of BMMSCs may be closely related to irradiation-induced bone damage. Macropahges play important role in regulating stem cell function, bone metabolic balance and irradiation response, but the effects of macrophages on irradiated BMMSCs are still unclear. This study aimed to investigate the role of macrophages and macrophage-derived exosomes in restoring irradiated BMMSCs function. The effects of macrophage conditioned medium (CM) and macrophage-derived exosomes on osteogenic and fibrogenic differentiation capacities of irradiated BMMSCs were detected. The key microribonucleic acids (miRNAs) and targeted proteins in exosomes were also determined. The results showed that irradiation significantly inhibited the proliferation of BMMSCs, and caused differentiation imbalance of BMMSCs, with decreased osteogenic differentiation and increased fibrogenic differentiation. M2 macrophage-derived exosomes (M2D-exos) inhibited the fibrogenic differentiation and promoted the osteogenic differentiation of irradiated BMMSCs. We identified that miR-142-3p was significantly overexpressed in M2D-exos and irradiated BMMSCs treated with M2D-exos. After inhibition of miR-142-3p in M2 macrophage, the effects of M2D-exos on irradiated BMMSCs differentiation were eliminated. Furthermore, transforming growth factor beta 1 (TGF-beta 1), as a direct target of miR-142-3p, was significantly decreased in irradiated BMMSCs treated with M2D-exos. This study indicated that M2D-exos could carry miR-142-3p to restore the differentiation balance of irradiated BMMSCs by targeting TGF-beta 1. These findings pave a new way for promising and cell-free method to treat irradiation-induced bone damage.
引用
收藏
页码:993 / 1010
页数:18
相关论文
共 50 条
  • [21] M2 macrophage-derived exosomal miR-193b-3p promotes progression and glutamine uptake of pancreatic cancer by targeting TRIM62
    Zhang, Ke
    Li, Yu-Jie
    Peng, Lin-Jia
    Gao, Hui-Feng
    Liu, Lu-Ming
    Chen, Hao
    BIOLOGY DIRECT, 2023, 18 (01)
  • [22] M2 macrophage-derived exosomal miR-193b-3p promotes progression and glutamine uptake of pancreatic cancer by targeting TRIM62
    Ke Zhang
    Yu-Jie Li
    Lin-Jia Peng
    Hui-Feng Gao
    Lu-Ming Liu
    Hao Chen
    Biology Direct, 18
  • [23] Mechanism of miR-378a-3p enriched in M2 macrophage-derived extracellular vesicles in cardiomyocyte pyroptosis after MI
    Wei Yuan
    Xiao Liang
    Yingying Liu
    Haichen Wang
    Hypertension Research, 2022, 45 : 650 - 664
  • [24] M2 Macrophage-Derived Exosomal lncRNA MIR4435-2HG Promotes Progression of Infantile Hemangiomas by Targeting HNRNPA1
    Li, Zhiyu
    Cao, Zhongying
    Li, Nanxi
    Wang, Luying
    Fu, Cong
    Huo, Ran
    Xu, Guangqi
    Tian, Chonglin
    Bi, Jianhai
    INTERNATIONAL JOURNAL OF NANOMEDICINE, 2023, 18 : 5943 - 5960
  • [25] M1 macrophage-derived exosomes containing miR-150 inhibit glioma progression by targeting MMP16
    Yan, Pengfei
    Wang, Jia
    Liu, Hongya
    Liu, Xia
    Fu, Rong
    Feng, Jun
    CELLULAR SIGNALLING, 2023, 108
  • [26] M2-like macrophage-derived exosomes inhibit osteoclastogenesis via releasing miR-1227-5p
    Chen, Shan
    Liu, Jian
    Zhu, Lilei
    IMMUNOBIOLOGY, 2025, 230 (01)
  • [27] M2 macrophage-derived exosomal miR-26b-5p regulates macrophage polarization and chondrocyte hypertrophy by targeting TLR3 and COL10A1 to alleviate osteoarthritis
    Yufan Qian
    Genglei Chu
    Lei Zhang
    Zhikai Wu
    Qiuyuan Wang
    Jiong Jiong Guo
    Feng Zhou
    Journal of Nanobiotechnology, 22
  • [28] M2 macrophage-derived exosomal miR-26b-5p regulates macrophage polarization and chondrocyte hypertrophy by targeting TLR3 and COL10A1 to alleviate osteoarthritis
    Qian, Yufan
    Chu, Genglei
    Zhang, Lei
    Wu, Zhikai
    Wang, Qiuyuan
    Guo, Jiong Jiong
    Zhou, Feng
    JOURNAL OF NANOBIOTECHNOLOGY, 2024, 22 (01)
  • [29] M2 macrophage-derived exosomal miR-486-5p influences the differentiation potential of bone marrow mesenchymal stem cells and osteoporosis
    Liu, Jincheng
    Sun, Zhenqian
    You, Yunhao
    Zhang, Lu
    Hou, Dehui
    Gu, Guanghui
    Chen, Yunzhen
    Jiao, Guangjun
    AGING-US, 2023, 15 (18): : 9499 - 9520
  • [30] MiR-186-5p carried by M2 macrophage-derived exosomes downregulates TRPP2 expression in airway smooth muscle to alleviate asthma progression
    Wang, Zunyun
    Ren, Yan
    Li, Yicong
    Zhang, Yuxin
    Bai, Suwen
    Hou, Wenxuan
    Zhang, Wenjun
    Yao, Yanheng
    Zhao, Hongxian
    Wang, Minghua
    Luo, Yumei
    Pang, Gang
    Du, Juan
    INTERNATIONAL IMMUNOPHARMACOLOGY, 2025, 148