Comparative survey of multigraph integration methods for holistic brain connectivity mapping

被引:8
|
作者
Chaari, Nada [1 ,2 ]
Akdag, Hatice Camgoez [2 ]
Rekik, Islem [1 ,3 ]
机构
[1] Istanbul Tech Univ, Fac Comp & Informat, BASIRA lab, Istanbul, Turkiye
[2] Istanbul Tech Univ, Fac Management, Istanbul, Turkiye
[3] Imperial Coll London, Comp Imperial X Translat & Innovat Hub, London, England
基金
欧盟地平线“2020”;
关键词
Multiview brain connectivity; Multigraph integration; Connectional brain template; Graph fusion techniques; MILD COGNITIVE IMPAIRMENT; ALZHEIMERS-DISEASE; CORTICAL THICKNESS; ENTORHINAL CORTEX; SEX-DIFFERENCES; COMMUNITY STRUCTURE; NETWORK; GENDER; ATROPHY; AUTISM;
D O I
10.1016/j.media.2023.102741
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
One of the greatest scientific challenges in network neuroscience is to create a representative map of a population of heterogeneous brain networks, which acts as a connectional fingerprint. The connectional brain template (CBT), also named network atlas, presents a powerful tool for capturing the most representative and discriminative traits of a given population while preserving its topological patterns. The idea of a CBT is to integrate a population of heterogeneous brain connectivity networks, derived from different neuroimaging modalities or brain views (e.g., structural and functional), into a unified holistic representation. Here we review current state-of-the-art methods designed to estimate well-centered and representative CBT for populations of single-view and multi-view brain networks. We start by reviewing each CBT learning method, then we introduce the evaluation measures to compare CBT representativeness of populations generated by single-view and multigraph integration methods, separately, based on the following criteria: Centeredness, biomarker-reproducibility, node-level similarity, global-level similarity, and distance-based similarity. We demonstrate that the deep graph normalizer (DGN) method significantly outperforms other multi-graph and all single-view integration methods for estimating CBTs using a variety of healthy and disordered datasets in terms of centeredness, reproducibility (i.e., graph-derived biomarkers reproducibility that disentangle the typical from the atypical connectivity variability), and preserving the topological traits at both local and global graph-levels.
引用
收藏
页数:23
相关论文
共 50 条
  • [41] Spectral mapping of brain functional connectivity from diffusion imaging
    Becker, Cassiano O.
    Pequito, Sergio
    Pappas, George J.
    Miller, Michael B.
    Grafton, Scott T.
    Bassett, Danielle S.
    Preciado, Victor M.
    SCIENTIFIC REPORTS, 2018, 8
  • [42] Studies of cortical connectivity using optical circuit mapping methods
    Anastasiades, Paul G.
    Marques-Smith, Andre
    Butt, Simon J. B.
    JOURNAL OF PHYSIOLOGY-LONDON, 2018, 596 (02): : 145 - 162
  • [43] GENE DISCOVERY IN CEREBRAL CONNECTIVITY: MAPPING THE BRAIN'S ROADS
    Argilli, E.
    Matalon, D. R.
    Fregeau, B.
    de Santiago, V.
    Da Gente, G.
    Gur, J.
    Wheeler, M.
    DiTroia, S.
    England, E.
    Richards, L. J.
    Barkovich, A. J.
    Dobyns, B.
    Sherr, E. H.
    AMERICAN JOURNAL OF MEDICAL GENETICS PART A, 2020, 182 (04) : 887 - 887
  • [44] Mapping Cytoarchitectonics and Receptor Architectonics to Understand Brain Function and Connectivity
    Zachlod, Daniel
    Palomero-Gallagher, Nicola
    Dickscheid, Timo
    Amunts, Katrin
    BIOLOGICAL PSYCHIATRY, 2023, 93 (05) : 471 - 479
  • [45] Towards the "Baby Connectome": Mapping the Structural Connectivity of the Newborn Brain
    Tymofiyeva, Olga
    Hess, Christopher P.
    Ziv, Etay
    Tian, Nan
    Bonifacio, Sonia L.
    McQuillen, Patrick S.
    Ferriero, Donna M.
    Barkovich, A. James
    Xu, Duan
    PLOS ONE, 2012, 7 (02):
  • [46] Mapping brain anatomical connectivity using white matter tractography
    Lazar, Mariana
    NMR IN BIOMEDICINE, 2010, 23 (07) : 821 - 835
  • [47] Brain Functional Connectivity Mapping of Behavioral Flexibility in Rhesus Monkeys
    Grant, Kathleen A.
    Newman, Natali
    Lynn, Colton
    Davenport, Conor
    Gonzales, Steven
    Carlson, Verginia C. Cuzon
    Kroenke, Christopher D.
    JOURNAL OF NEUROSCIENCE, 2022, 42 (24): : 4867 - 4878
  • [48] Mapping brain connectivity defects in schizophrenia by diffusion tensor MRI
    Preda, A
    Arlinghaus, L
    Fernandez, K
    Loch, R
    Anderson, A
    Hoffman, R
    SCHIZOPHRENIA BULLETIN, 2005, 31 (02) : 402 - 403
  • [49] Spectral mapping of brain functional connectivity from diffusion imaging
    Cassiano O. Becker
    Sérgio Pequito
    George J. Pappas
    Michael B. Miller
    Scott T. Grafton
    Danielle S. Bassett
    Victor M. Preciado
    Scientific Reports, 8
  • [50] Brain Mapping-Aided SupraTotal Resection (SpTR) of Brain Tumors: The Role of Brain Connectivity
    Giammalva, Giuseppe Roberto
    Brunasso, Lara
    Costanzo, Roberta
    Paolini, Federica
    Umana, Giuseppe Emmanuele
    Scalia, Gianluca
    Gagliardo, Cesare
    Gerardi, Rosa Maria
    Basile, Luigi
    Graziano, Francesca
    Guli, Carlo
    Messina, Domenico
    Pino, Maria Angela
    Feraco, Paola
    Tumbiolo, Silvana
    Midiri, Massimo
    Iacopino, Domenico Gerardo
    Maugeri, Rosario
    FRONTIERS IN ONCOLOGY, 2021, 11