Switchable Kirigami Structures as Window Envelopes for Energy-Efficient Buildings

被引:16
|
作者
Yin, Hanzhi [1 ]
Zhou, Xishu [1 ]
Zhou, Zhengui [1 ]
Liu, Rong [1 ]
Mo, Xiwei [1 ]
Chen, Zewen [1 ]
Yang, Erqi [1 ]
Huang, Zhen [1 ]
Li, Hao [2 ]
Wu, Hao [2 ]
Zhou, Jun [1 ]
Long, Yi [3 ,4 ]
Hu, Bin [1 ,5 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Opt & Elect Informat, Wuhan Natl Lab Optoelect, Wuhan 430074, Hubei, Peoples R China
[2] Huazhong Univ Sci & Technol, Sch Mech Sci & Engn, Wuhan 430074, Hubei, Peoples R China
[3] Chinese Univ Hong Kong, Dept Elect Engn, Shatin, Hong Kong 999077, Peoples R China
[4] Nanyang Technol Univ, Sch Mat Sci & Engn, Singapore 639798, Singapore
[5] Shenzhen Huazhong Univ Sci & Technol, Res Inst, Shenzhen 518057, Peoples R China
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
SMART WINDOWS; TOMORROW; OXIDE;
D O I
10.34133/research.0103
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Efficient regulation of thermal radiation is an effective way to conserve energy consumption of buildings. Because windows are the least energy-efficient part of buildings, their thermal radiation regulation is highly demanded, especially in the changing environment, but is still a challenge. Here, by employing a kirigami structure, we design a variable-angle thermal reflector as a transparent envelope of windows for their thermal radiation modulation. The envelope can be easily switched between heating and cooling modes by loading different pre-stresses, which endow the envelope windows with the ability of temperature regulation, and the interior temperature of a building model can be reduced by-3.3 degrees C under cooling mode and increased by-3.9 degrees C under heating mode in the outdoor test. The improved thermal management of windows by the adaptive envelope provides an extra heating, ventilation, and air-conditioning energy savings percentage of 13% to 29% per year for buildings located in different climate zones around the world, making the kirigami envelope windows a promising way for energy-saving utilization.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] ENERGY-EFFICIENT BUILDINGS - WAGNER,WF
    HOKE, JR
    AIA JOURNAL-AMERICAN INSTITUTE OF ARCHITECTS, 1981, 70 (01): : 84 - +
  • [22] Toward energy-efficient buildings in Oman
    Al-Badi, A. H.
    Al-Saadi, S. N.
    INTERNATIONAL JOURNAL OF SUSTAINABLE ENERGY, 2020, 39 (05) : 412 - 433
  • [23] Driving Data into Energy-Efficient Buildings
    Sutherland, Brandon R.
    JOULE, 2020, 4 (11) : 2256 - 2258
  • [24] Automated Planner for Energy-efficient Buildings
    Ngoko, Yanik
    Cerin, Christophe
    2017 IEEE 10TH CONFERENCE ON SERVICE-ORIENTED COMPUTING AND APPLICATIONS (SOCA), 2017, : 147 - 154
  • [25] ENERGY-EFFICIENT RETROFITTING OF OFFICE BUILDINGS
    NILSSON, PE
    ARONSSON, S
    JAGEMAR, L
    ENERGY AND BUILDINGS, 1994, 21 (03) : 175 - 185
  • [26] Energy-efficient elevators for tall buildings
    Hakala, H
    Siikonen, ML
    Tyni, T
    Ylinen, J
    TALL BUILDINGS AND URBAN HABITAT: CITIES IN THE THIRD MILLENNIUM, 2001, : 559 - 574
  • [27] ENERGY-EFFICIENT BUILDINGS - WAGNER,WF
    STEVENS, T
    RIBA JOURNAL-ROYAL INSTITUTE OF BRITISH ARCHITECTS, 1981, 88 (06): : 23 - 23
  • [28] Functional materials for energy-efficient buildings
    Ebert, H. -P.
    LECTURES NOTES - JOINT EPS-SIF INTERNATIONAL SCHOOL ON ENERGY - COURSE 2 ENERGY: BASIC CONCEPTS AND FOREFRONT IDEAS, 2015, 98
  • [29] Energy-Efficient Buildings Facilitated by Microgrid
    Guan, Xiaohong
    Xu, Zhanbo
    Jia, Qing-Shan
    IEEE TRANSACTIONS ON SMART GRID, 2010, 1 (03) : 243 - 252
  • [30] Procurement Path For Energy-Efficient Buildings
    McMillen, Adam
    Torcellini, Paul
    Ray, Sumit
    Rodgers, Kevin
    ASHRAE JOURNAL, 2015, 57 (04) : 12 - +