Assessment of ensemble learning for object-based land cover mapping using multi-temporal Sentinel-1/2 images

被引:6
|
作者
Xu, Suchen [1 ]
Xiao, Wu [1 ]
Ruan, Linlin [1 ]
Chen, Wenqi [1 ]
Du, Jingnan [2 ]
机构
[1] Zhejiang Univ, Dept Land Management, Hangzhou, Peoples R China
[2] Zhejiang Univ, Dept Publ Adm, Hangzhou, Peoples R China
关键词
land cover mapping; multi-temporal; Sentinel; object-based; SUPPORT VECTOR MACHINES; FOREST CLASSIFICATION; TIME-SERIES; URBAN; SEGMENTATION; INTEGRATION; SYSTEM; AMAZON;
D O I
10.1080/10106049.2023.2195832
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Accurate land cover mapping is challenging in Southeast Asia where cloud coverage is prevalent and landscape is heterogenous. Object-based mapping, multi-temporal images and combined use of optical and microwave data, provide abundant features in spectral, spatial, temporal, geometric and polarimetric dimensions. And random forest is usually employed due to robustness and efficiency in handling high-dimensional and noisy data. This study assesses whether feature selection and ensemble analysis, which are rarely adopted, yield improved result. Recursive feature elimination decreases original 568 features into a subset of 53 features, achieving the optimal combination of features. Ensemble analysis of random forest, support vector machine, and K-nearest neighbors leads to an overall accuracy of 0.816. Comparison experiments demonstrated the merits of the multi-temporal, multi-source approach, feature elimination and ensemble analysis.
引用
收藏
页数:21
相关论文
共 50 条
  • [21] A methodology for mapping annual flood extent using multi-temporal Sentinel-1 imagery
    McCormack, T.
    Campanya, J.
    Naughton, O.
    REMOTE SENSING OF ENVIRONMENT, 2022, 282
  • [22] Boreal Forest Snow Damage Mapping Using Multi-Temporal Sentinel-1 Data
    Tomppo, Erkki
    Antropov, Oleg
    Praks, Jaan
    REMOTE SENSING, 2019, 11 (04)
  • [23] Critical Assessment of Land Use Land Cover Dynamics Using Multi-Temporal Satellite Images
    Mondal, Md. Surabuddin
    Sharma, Nayan
    Kappas, Martin
    Garg, P. K.
    ENVIRONMENTS, 2015, 2 (01): : 61 - 90
  • [24] Object-based City Land Cover Classification and Change Analysis with Multi-temporal High Resolution Remote Sensing Images in Jiangyin
    Ning Xiaogang
    Zhang Jixian
    Chen Zhiyong
    2013 JOINT URBAN REMOTE SENSING EVENT (JURSE), 2013, : 107 - 110
  • [25] LAND COVER MAPPING USING SENTINEL-1 SAR DATA
    Abdikan, S.
    Sanli, F. B.
    Ustuner, M.
    Calo, F.
    XXIII ISPRS CONGRESS, COMMISSION VII, 2016, 41 (B7): : 757 - 761
  • [26] Mapping tree species diversity of temperate forests using multi-temporal Sentinel-1 and -2 imagery
    Xi, Yanbiao
    Zhang, Wenmin
    Brandt, Martin
    Tian, Qingjiu
    Fensholt, Rasmus
    SCIENCE OF REMOTE SENSING, 2023, 8
  • [27] Assessment of object-based classification for mapping land use and land cover using google earth
    Selvaraj, Rohini
    Amali, D. Geraldine Bessie
    GLOBAL NEST JOURNAL, 2023, 25 (07): : 131 - 138
  • [28] Towards a Multi-Temporal Deep Learning Approach for Mapping Urban Fabric Using Sentinel 2 Images
    El Mendili, Lamiae
    Puissant, Anne
    Chougrad, Mehdi
    Sebari, Imane
    REMOTE SENSING, 2020, 12 (03)
  • [29] THE MULTI-TEMPORAL RELATIONSHIP BETWEEN SENTINEL-1 SAR FEATURES AND SENTINEL-2 NDVI FOR DIFFERENT LAND USE / LAND COVER CLASSES IN CENTRAL AFRICA
    Rucinski, Marek
    Foks-Ryznar, Anna
    Mayos, Lluis Pesquer
    Wozniak, Edyta
    Domingo-Marimon, Cristina
    Jenerowicz-Sanikowska, Malgorzata
    Krupinski, Michal
    Gromny, Ewa
    Aleksandrowicz, Sebastian
    IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2023, : 325 - 328
  • [30] Understanding wheat lodging using multi-temporal Sentinel-1 and Sentinel-2 data
    Chauhan, Sugandh
    Darvishzadeh, Roshanak
    Lu, Yi
    Boschetti, Mirco
    Nelson, Andrew
    REMOTE SENSING OF ENVIRONMENT, 2020, 243 (243)