Assessment of ensemble learning for object-based land cover mapping using multi-temporal Sentinel-1/2 images

被引:6
|
作者
Xu, Suchen [1 ]
Xiao, Wu [1 ]
Ruan, Linlin [1 ]
Chen, Wenqi [1 ]
Du, Jingnan [2 ]
机构
[1] Zhejiang Univ, Dept Land Management, Hangzhou, Peoples R China
[2] Zhejiang Univ, Dept Publ Adm, Hangzhou, Peoples R China
关键词
land cover mapping; multi-temporal; Sentinel; object-based; SUPPORT VECTOR MACHINES; FOREST CLASSIFICATION; TIME-SERIES; URBAN; SEGMENTATION; INTEGRATION; SYSTEM; AMAZON;
D O I
10.1080/10106049.2023.2195832
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Accurate land cover mapping is challenging in Southeast Asia where cloud coverage is prevalent and landscape is heterogenous. Object-based mapping, multi-temporal images and combined use of optical and microwave data, provide abundant features in spectral, spatial, temporal, geometric and polarimetric dimensions. And random forest is usually employed due to robustness and efficiency in handling high-dimensional and noisy data. This study assesses whether feature selection and ensemble analysis, which are rarely adopted, yield improved result. Recursive feature elimination decreases original 568 features into a subset of 53 features, achieving the optimal combination of features. Ensemble analysis of random forest, support vector machine, and K-nearest neighbors leads to an overall accuracy of 0.816. Comparison experiments demonstrated the merits of the multi-temporal, multi-source approach, feature elimination and ensemble analysis.
引用
收藏
页数:21
相关论文
共 50 条
  • [1] SINCOHMAP: LAND-COVER AND VEGETATION MAPPING USING MULTI-TEMPORAL SENTINEL-1 INTERFEROMETRIC COHERENCE
    Vicente-Guijalba, F.
    Jacob, A.
    Lopez-Sanchez, J. M.
    Lopez-Martinez, C.
    Duro, J.
    Notarnicola, C.
    Ziolkowski, D.
    Mestre-Quereda, A.
    Pottier, E.
    Mallorqui, J. J.
    Lavalle, M.
    Engdahl, M.
    IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, : 6631 - 6634
  • [2] Object-based machine learning approach for soybean mapping using temporal sentinel-1/sentinel-2 data
    Kumari, Mamta
    Pandey, Varun
    Choudhary, Karun Kumar
    Murthy, C. S.
    GEOCARTO INTERNATIONAL, 2022, 37 (23) : 6848 - 6866
  • [3] Integration of Sentinel-1 and Sentinel-2 Data for Ground Truth Sample Migration for Multi-Temporal Land Cover Mapping
    Moharrami, Meysam
    Attarchi, Sara
    Gloaguen, Richard
    Alavipanah, Seyed Kazem
    REMOTE SENSING, 2024, 16 (09)
  • [4] Backscatter Characteristics Analysis for Flood Mapping Using Multi-Temporal Sentinel-1 Images
    Huang, Minmin
    Jin, Shuanggen
    REMOTE SENSING, 2022, 14 (15)
  • [5] TEXTURE AND INTENSITY BASED LAND COVER CLASSIFICATION IN GERMANY FROM MULTI-ORBIT & MULTI-TEMPORAL SENTINEL-1 IMAGES
    Suresh, Gopika
    Hovenbitzer, Michael
    IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, : 826 - 829
  • [6] Object-Based Multi-Temporal and Multi-Source Land Cover Mapping Leveraging Hierarchical Class Relationships
    Gbodjo, Yawogan Jean Eudes
    Ienco, Dino
    Leroux, Louise
    Interdonato, Roberto
    Gaetano, Raffaele
    Ndao, Babacar
    REMOTE SENSING, 2020, 12 (17) : 1 - 28
  • [7] Multi-Temporal Land Cover Change Mapping Using Google Earth Engine and Ensemble Learning Methods
    Wagle, Nimisha
    Acharya, Tri Dev
    Kolluru, Venkatesh
    Huang, He
    Lee, Dong Ha
    APPLIED SCIENCES-BASEL, 2020, 10 (22): : 1 - 20
  • [8] Land Use and Land Cover Mapping with VHR and Multi-Temporal Sentinel-2 Imagery
    Cuypers, Suzanna
    Nascetti, Andrea
    Vergauwen, Maarten
    REMOTE SENSING, 2023, 15 (10)
  • [9] Determination of land cover change with multi-temporal Sentinel 2 satellite images and machine learning-based algorithms
    Efe, Esma
    Alganci, Ugur
    GEOMATIK, 2023, 8 (01): : 27 - 34
  • [10] COMBINING SENTINEL-1 AND SENTINEL-2 TIME SERIES VIA RNN FOR OBJECT-BASED LAND COVER CLASSIFICATION
    Ienco, Dino
    Gaetano, Raffaele
    Ose, Roberto Interdonato Kenji
    Dinh Ho Tong Minh
    2019 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2019), 2019, : 4881 - 4884