Fast Fourier Transform Coupled with Machine Learning Algorithm for K-Complexes Detection

被引:0
|
作者
Morad, Mohammed [1 ]
Oudah, Atheer Y. [1 ,2 ]
Diykh, Mohammed [1 ]
Marhoon, Haydar Abdulameer [2 ,3 ]
Taher, Hazeem B. [1 ]
机构
[1] Univ Thi Qar, Coll Educ Pure Sci, Nasiriyah, Iraq
[2] Al Ayen Univ, Sci Res Ctr, Informat & Commun Technol Res Grp, Nasiriyah, Iraq
[3] Univ Karbala, Coll Comp Sci & Informat, Dept Informat Technol, Karbala, Iraq
来源
PROCEEDINGS OF THIRD DOCTORAL SYMPOSIUM ON COMPUTATIONAL INTELLIGENCE, DOSCI 2022 | 2023年 / 479卷
关键词
Electroencephalogram; K-complexes; Fast Fourier transform; Ensemble classifier; SLEEP;
D O I
10.1007/978-981-19-3148-2_26
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper proposes a novel K-complexes (KCs) detection approach using sleep electroencephalogram (EEG) recordings. A segmentation technique is used to partition an EEG signal into intervals. Then, fast Fourier transform (FFT) is applied to each EEG segment. To find out the most effective input features to represent the EEG signal, the FFT coefficients were investigated. The extracted features are then utilized as the input to an ensemble classifier which is designed using three classifiers: K-means, the Naive Bayes algorithm and least square support vector machines (LS-SVM). A comparison with existing studies is made and the results showed that the proposed model outperformed state of the art. The proposed approach can be developed as an online system to detect KCs in EEG signals. In addition, it can be applied to other EEG data such as detect sleep apnoea.
引用
收藏
页码:307 / 313
页数:7
相关论文
共 50 条
  • [41] On Performance of Sparse Fast Fourier Transform and Enhancement Algorithm
    Chen, Gui-Lin
    Tsai, Shang-Ho
    Yang, Kai-Jiun
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2017, 65 (21) : 5716 - 5729
  • [42] Improved fast fractional-Fourier-transform algorithm
    Yang, XP
    Tan, QF
    Wei, XF
    Xiang, Y
    Yan, YB
    Jin, GF
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2004, 21 (09) : 1677 - 1681
  • [43] A subspace tracking algorithm using the fast fourier transform
    Cooley, JW
    Toolan, TM
    Tufts, DW
    IEEE SIGNAL PROCESSING LETTERS, 2004, 11 (01) : 30 - 32
  • [44] Indexing in the Good–Thomas Fast Fourier Transform Algorithm
    M. S. Bespalov
    Computational Mathematics and Mathematical Physics, 2025, 65 (3) : 449 - 456
  • [45] The modular pipeline fast Fourier transform algorithm and architecture
    El-Khashab, AM
    Swarzlander, E
    CONFERENCE RECORD OF THE THIRTY-SEVENTH ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS & COMPUTERS, VOLS 1 AND 2, 2003, : 1463 - 1467
  • [46] THE TECHNIQUES OF THE GENERALIZED FAST FOURIER-TRANSFORM ALGORITHM
    STASINSKI, R
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1991, 39 (05) : 1058 - 1069
  • [47] An Audio Watermarking Algorithm Based on Fast Fourier Transform
    Wen, Xiumei
    Ding, Xuejun
    Li, Jianhua
    Gao, Liting
    Sun, Haoyue
    2009 INTERNATIONAL CONFERENCE ON INFORMATION MANAGEMENT, INNOVATION MANAGEMENT AND INDUSTRIAL ENGINEERING, VOL 1, PROCEEDINGS, 2009, : 363 - 366
  • [48] A NESTED VINOGRAD ALGORITHM OF THE FAST FOURIER-TRANSFORM
    GOLOVCHENKO, AG
    IVASHKO, AV
    IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENII RADIOELEKTRONIKA, 1990, 33 (01): : 94 - 96
  • [49] A Machine Learning Approach for the Detection of QRS Complexes in Electrocardiogram (ECG) Using Discrete Wavelet Transform (DWT) Algorithm
    Rizwan, Ali
    Priyanga, P.
    Abualsauod, Emad H.
    Zafrullah, Syed Nasrullah
    Serbaya, Suhail H.
    Halifa, Awal
    COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE, 2022, 2022
  • [50] Detection of K-complexes and sleep spindles (DETOKS) using sparse optimization
    Parekh, Ankit
    Selesnick, Ivan W.
    Rapoport, David M.
    Ayappa, Indu
    JOURNAL OF NEUROSCIENCE METHODS, 2015, 251 : 37 - 46