Low-temperature atmospheric pressure plasma conversion of polydimethylsiloxane and polysilazane precursor layers to oxide thin films

被引:0
|
作者
Rudolph, Martin [1 ]
Birtel, Peter [1 ]
Arnold, Thomas [1 ,2 ]
Prager, Andrea [1 ]
Naumov, Sergej [1 ]
Helmstedt, Ulrike [1 ]
Anders, Andre [1 ,3 ]
With, Patrick C. [1 ,4 ]
机构
[1] Leibniz Inst Surface Engn IOM, Leipzig, Germany
[2] Tech Univ Dresden, Inst Mfg Sci & Engn, Fac Mech Sci & Engn, Dresden, Germany
[3] Univ Leipzig, Felix Bloch Inst Solid State Phys, Leipzig, Germany
[4] Leibniz Inst Surface Engn IOM, Permoser Str15, D-04318 Leipzig, Germany
关键词
atmospheric pressure plasma; low-temperature conversion; organosilicon precursors; perhydropolysilazane; pulsed discharge; CHEMICAL-VAPOR-DEPOSITION; SILICON DIOXIDE; BARRIER FILMS; DISCHARGE; PERMEATION; FIBERS; AIR;
D O I
10.1002/ppap.202200229
中图分类号
O59 [应用物理学];
学科分类号
摘要
We study the conversion of two polymeric silicon precursor compound layers (perhydropolysilazane and polydimethylsiloxane) on a silicon wafer and polyethylene terephthalate substrates to silicon oxide thin films using a pulsed atmospheric pressure plasma jet. Varying the scan velocity and the number of treatments results in various film compositions, as determined by X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy. The mechanism suggested for the conversion process includes the decomposition of the precursor triggered by plasma-produced species, the oxidation of the surface, and finally, the diffusion of oxygen into the film, while gases produced during the precursor decomposition diffuse out of the film. The latter process is possibly facilitated by local plasma heating of the surface. The precursor conversion appears to depend sensitively on the balance between the different contributions to the conversion mechanism.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] Microwave Complex for Creation of Low-Temperature Plasma at Atmospheric Pressure
    Gorbatov, S. A.
    Petrukhina, D. I.
    Tikhonov, A. V.
    Tikhonov, V. N.
    Ivanov, I. A.
    INSTRUMENTS AND EXPERIMENTAL TECHNIQUES, 2023, 66 (06) : 1033 - 1036
  • [22] Application of Low-Temperature Atmospheric-Pressure Plasma in Metallurgy
    Gadzhiev, M. Kh
    Il'ichev, M., V
    Yusupov, D., I
    Tyuftyaev, A. S.
    RUSSIAN METALLURGY, 2021, 2021 (12): : 1504 - 1509
  • [23] Low-temperature and atmospheric pressure plasma for palm biodiesel hydrogenation
    Kongprawes, Grittima
    Wongsawaeng, Doonyapong
    Ngaosuwan, Kanokwan
    Kiatkittipong, Worapon
    Assabumrungrat, Suttichai
    SCIENTIFIC REPORTS, 2021, 11 (01)
  • [24] Deposition of zinc oxide thin films by an atmospheric pressure plasma jet
    Hsu, Yao-wen
    Li, Hsin-Chieh
    Yang, Yao-Jhen
    Hsu, Cheng-che
    THIN SOLID FILMS, 2011, 519 (10) : 3095 - 3099
  • [25] Rapid and low-temperature preparation of tungsten oxide electrochromic thin films by oxygen plasma treatment
    Guo, Chenxiao
    Li, Muyun
    Li, Xinglin
    Ning, Honglong
    Qiu, Tian
    Luo, Dongxiang
    Luo, Cheng
    Xu, Wei
    Yao, Rihui
    Peng, Junbiao
    OPTICAL MATERIALS, 2023, 145
  • [26] POLYMERIZATION OF THIN-FILMS BY THE LOW-TEMPERATURE PLASMA METHOD
    SEGUI, Y
    VIDE-SCIENCE TECHNIQUE ET APPLICATIONS, 1985, 40 (227): : 367 - 380
  • [27] Low-temperature crystallization of electroceramic thin films at elevated pressure
    Lu, CH
    Chen, YC
    Sun, YC
    JOURNAL OF MATERIALS CHEMISTRY, 2002, 12 (06) : 1628 - 1630
  • [28] A new approach for synthesizing plasmonic polymer nanocomposite thin films by combining a gold salt aerosol and an atmospheric pressure low-temperature plasma
    Nadal, Elie
    Milaniak, Natalia
    Glenat, Herve
    Laroche, Gaetan
    Massines, Francoise
    NANOTECHNOLOGY, 2021, 32 (17)
  • [29] LOW-TEMPERATURE GROWTH OF MOCVD GAAS-LAYERS AT ATMOSPHERIC-PRESSURE
    ESCOBOSA, A
    KRAUTLE, H
    BENEKING, H
    JOURNAL OF CRYSTAL GROWTH, 1982, 57 (03) : 605 - 606
  • [30] Low-Temperature Atmospheric Pressure Plasma Treatment in the Polymer and Textile Industry
    Domonkos, Maria
    Ticha, Petra
    IEEE TRANSACTIONS ON PLASMA SCIENCE, 2023, 51 (07) : 1671 - 1681