Carbon-doped nickel oxide hollow nanospheres for enhanced photocatalytic CO2 reduction

被引:4
|
作者
Tao, Feifei [1 ]
Liang, Pengfei [1 ,2 ]
Wei, Shiqian [3 ]
Hu, Yu [3 ]
Zhang, Pingan [1 ]
Wang, Wei [2 ]
机构
[1] Shaoxing Univ, Sch Chem & Chem Engn, Shaoxing 312000, Zhejiang, Peoples R China
[2] Shaoxing Univ, Sch Civil Engn, Shaoxing 312000, Zhejiang, Peoples R China
[3] Leshan Normal Univ, Sch New Energy Mat & Chem, Leshan 614004, Sichuan, Peoples R China
基金
中国国家自然科学基金;
关键词
Nickel oxide hollow nanostructure; Carbon spheres; Photocatalytic reduction of CO2; CO2; REDUCTION; NIO; DEGRADATION; SPHERES; NANOPARTICLES; MICROSPHERES; PERFORMANCE; NANORODS; GREEN;
D O I
10.1016/j.seppur.2024.126510
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Through artificial photosynthesis the conversion of CO2 assisted by photocatalyst is conducive to alleviating greenhouse effect and energy shortage. Herein, the carbon-doped NiO hollow nanospheres (C-NiO) were constructed by using the glucose-based carbon spheres as sacrificial template and dopants of carbon. The obtained C-NiO samples with adjustable carbon content show high specific surface area (114.02-139.49 m(2)<middle dot>g(-1)) as compared with NiO (13.93 m(2)<middle dot>g(-1)), which is beneficial to the adsorption and activation of more CO2 molecules, thereby improving CO2 photo-reduction. As expected, the C-NiO samples convert CO2 into CO and CH4 with high yield efficiency and stability due to the hollow nanostructure and the carbon-doping, which could increase CO2 adsorption and light utilization, gain more active sites, reduce band gap and propel the charge separation and migration. The optimization of morphology and composition of photocatalysts is an effective strategy for the enhancement of CO2 photo-reduction, suggesting the great application prospect of the carbon-doped NiO hollow nanospheres in photocatalysis.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] CO2 switchable hollow nanospheres
    Mu, Meng
    Luo, Xinjie
    Wang, Wei
    Yin, Hongyao
    Feng, Yujun
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2018, 522 : 10 - 19
  • [22] Controllable synthesis of nitrogen-doped hollow carbon nanospheres with dopamine as precursor for CO2 capture
    Xia, Kechan
    Yu, Yifeng
    Li, Yunqian
    Li, Shuhui
    Wang, Yuying
    Wang, Guoxu
    Zhang, Hongliang
    Chen, Aibing
    RSC ADVANCES, 2016, 6 (94): : 91557 - 91561
  • [23] Enhanced Photocatalytic CO2 Reduction by Amine Functionalization of Graphitic Carbon Nitride
    Lachance, Robert
    Adeli, Babak
    Taghipour, Fariborz
    SOLAR RRL, 2024, 8 (07)
  • [24] Phosphorus-Doped Hollow Tubular g-C3N4 for Enhanced Photocatalytic CO2 Reduction
    Sun, Manying
    Zhu, Chuanwei
    Wei, Su
    Chen, Liuyun
    Ji, Hongbing
    Su, Tongming
    Qin, Zuzeng
    MATERIALS, 2023, 16 (20)
  • [25] Molybdenum phosphide coupled with highly dispersed nickel confined in porous carbon nanofibers for enhanced photocatalytic CO2 reduction
    Gong, Shuaiqi
    Hou, Mengjie
    Niu, Yanli
    Teng, Xue
    Liu, Xuan
    Xu, Mingze
    Xu, Chen
    Au, Vonika Ka-Man
    Chen, Zuofeng
    CHEMICAL ENGINEERING JOURNAL, 2022, 427
  • [26] Photocatalytic Optical Hollow Fiber with Enhanced Visible-light-driven CO2 Reduction
    Chen, Jie
    Liu, Yang
    Xie, Quanhua
    He, Yuanyuan
    Zhong, Dengjie
    Chang, Haixing
    Ho, Shih-Hsin
    Zhong, Nianbing
    SMALL, 2024, 20 (31)
  • [27] A P-doped BiOBr nanosheet for enhanced photocatalytic CO2 reduction efficiency
    Peng, Haijun
    Zhang, Qiugen
    Fan, Zheyuan
    Luo, Yongping
    Xu, Qiuhua
    Li, Jian
    Xie, Yu
    JOURNAL OF MOLECULAR STRUCTURE, 2024, 1307
  • [28] Sulfur doped In2O3-CeO2 hollow hexagonal prisms with carbon coating for efficient photocatalytic CO2 reduction
    Wang, Qi
    Chen, Yajie
    Liu, Xiu
    Li, Longge
    Du, Lizhi
    Tian, Guohui
    CHEMICAL ENGINEERING JOURNAL, 2021, 421
  • [29] Stacking Engineering of Semiconductor Heterojunctions on Hollow Carbon Spheres for Boosting Photocatalytic CO2 Reduction
    Zhang, Xingwei
    Wang, Peng
    Lv, Xuyu
    Niu, Xiangyue
    Lin, Xinyuan
    Zhong, Shuxian
    Wang, Dongmei
    Lin, Hongjun
    Chen, Jianrong
    Bai, Song
    ACS CATALYSIS, 2022, 12 (04) : 2569 - 2580
  • [30] Recent advances of doped graphite carbon nitride for photocatalytic reduction of CO2: a review
    Huang, Xiaoyue
    Gu, Wenyi
    Ma, Yunfei
    Liu, Da
    Ding, Ningkai
    Zhou, Liang
    Lei, Juying
    Wang, Lingzhi
    Zhang, Jinlong
    RESEARCH ON CHEMICAL INTERMEDIATES, 2020, 46 (12) : 5133 - 5164