Patchy Fe-N-C supported low-loading Pt nanoparticles as a highly active cathode for proton exchange membrane fuel cells

被引:2
|
作者
Hu, Bin [1 ]
Yang, Yongqing [1 ]
Cao, Wei [1 ]
Wang, Xixi [1 ]
Zhou, Chuan [1 ]
Mao, Yiyang [1 ]
Ge, Lei [2 ]
Ran, Ran [1 ]
Zhou, Wei [1 ]
机构
[1] Nanjing Tech Univ, Coll Chem Engn, State Key Lab Mat Oriented Chem Engn, Nanjing 210009, Peoples R China
[2] Univ Southern Queensland, Ctr Future Mat, Springfield Campus, Springfield Central, Qld 4300, Australia
基金
中国国家自然科学基金;
关键词
Low-loading; Patchy nitrogen -doped carbon; FeN4; sites; Scaled-up production; Extra ORR active sites; OXYGEN REDUCTION REACTION; CARBON; ELECTROCATALYSTS; DURABILITY;
D O I
10.1016/j.jallcom.2023.169867
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The high cost and unfavorable catalytic performance for oxygen reduction reaction (ORR) is one of the crucial obstacles that impede widely commercialization of proton-exchange membrane fuel cells (PEMFCs). Herein, we provide a novel, mass-producible ORR catalyst made of low-loading (10 wt%) Pt nanoparticles bound to patchy nitrogen-doped carbon (PNC) with uniformly dispersed FeN4 sites (Pt/FeN4-PNC). The derived catalyst exhibits significantly improved catalytic activity and stability, obtaining a promising mass activity (MA) of 0.94 A mgpt-1 at 0.9 V (vs. RHE) with a negligible decay after 30,000 cycles accelerated durability test (ADT). In the fuel-cell assessment (under H2-Air conditions at 80 celcius), the Pt/FeN4-PNC and Pt/ FeN4-PNC-10 g (scaled-up production) achieved peak power densities of 1.13 W cm-2 and 1.14 W cm-2, respectively, and retained 88.5 % and 88.1 % of the initial values after 30,000 voltage cycles (0.60-0.95 V). The patchy structure of PNC substrate guarantees fast electron routes and resistance to corrosion. With the FeN4 active sites in the PNC substrate, the oxygen molecules are concurrently reduced on the surfaces of the carbon substrate and Pt nanoparticles, thereby causing the ORR reaction zone on the catalyst layer to ex-pand. (c) 2023 Elsevier B.V. All rights reserved.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] High-performing commercial Fe-N-C cathode electrocatalyst for anion-exchange membrane fuel cells
    Adabi, Horie
    Shakouri, Abolfazl
    Ul Hassan, Noor
    Varcoe, John R.
    Zulevi, Barr
    Serov, Alexey
    Regalbuto, John R.
    Mustain, William E.
    NATURE ENERGY, 2021, 6 (08) : 834 - 843
  • [22] Structure of Active Sites of Fe-N-C Nano-Catalysts for Alkaline Exchange Membrane Fuel Cells
    Kishi, Hirofumi
    Sakamoto, Tomokazu
    Asazawa, Koichiro
    Yamaguchi, Susumu
    Kato, Takeshi
    Zulevi, Barr
    Serov, Alexey
    Artyushkova, Kateryna
    Atanassov, Plamen
    Matsumura, Daiju
    Tamura, Kazuhisa
    Nishihata, Yasuo
    Tanaka, Hirohisa
    NANOMATERIALS, 2018, 8 (12):
  • [23] A highly ordered Fe-N-C nanoarray as a non-precious oxygen-reduction catalyst for proton exchange membrane fuel cells
    Lei, M.
    Li, P. G.
    Li, L. H.
    Tang, W. H.
    JOURNAL OF POWER SOURCES, 2011, 196 (07) : 3548 - 3552
  • [24] Design of Pt-C/Fe-N-S-C cathode dual catalyst layers for proton exchange membrane fuel cells under low humidity
    Yin, Yan
    Liu, Jing
    Chang, Yafei
    Zhu, Yuanzhi
    Xie, Xu
    Qin, Yanzhou
    Zhang, Junfeng
    Jiao, Kui
    Du, Qing
    Guiver, Michael D.
    ELECTROCHIMICA ACTA, 2019, 296 : 450 - 457
  • [25] Atomically dispersed Pt and Fe sites and Pt–Fe nanoparticles for durable proton exchange membrane fuel cells
    Fei Xiao
    Qi Wang
    Gui-Liang Xu
    Xueping Qin
    Inhui Hwang
    Cheng-Jun Sun
    Min Liu
    Wei Hua
    Hsi-wen Wu
    Shangqian Zhu
    Jin-Cheng Li
    Jian-Gan Wang
    Yuanmin Zhu
    Duojie Wu
    Zidong Wei
    Meng Gu
    Khalil Amine
    Minhua Shao
    Nature Catalysis, 2022, 5 : 503 - 512
  • [26] A highly durable carbon-nanofiber-supported Pt-C core-shell cathode catalyst for ultra-low Pt loading proton exchange membrane fuel cells: facile carbon encapsulation
    Karuppannan, Mohanraju
    Kim, Youngkwang
    Gok, Sujin
    Lee, Eunjik
    Hwang, Jee Youn
    Jang, Ji-Hoon
    Cho, Yong-Hun
    Lim, Taeho
    Sung, Yung-Eun
    Kwon, Oh Joong
    ENERGY & ENVIRONMENTAL SCIENCE, 2019, 12 (09) : 2820 - 2829
  • [27] High Pt loading on functionalized multiwall carbon nanotubes as a highly efficient cathode electrocatalyst for proton exchange membrane fuel cells
    Fang, Baizeng
    Kim, Min-Sik
    Kim, Jung Ho
    Song, Min Young
    Wang, Yan-Jie
    Wang, Haijiang
    Wilkinson, David P.
    Yu, Jong-Sung
    JOURNAL OF MATERIALS CHEMISTRY, 2011, 21 (22) : 8066 - 8073
  • [28] Electrochemical study of highly durable cathode with Pt supported on ITO-CNT composite for proton exchange membrane fuel cells
    Park, Sehkyu
    Shao, Yuyan
    Viswanathan, Vilayanur V.
    Liu, Jun
    Wang, Yong
    JOURNAL OF INDUSTRIAL AND ENGINEERING CHEMISTRY, 2016, 42 : 81 - 86
  • [29] Fe-N-C electrocatalyst with dense active sites and efficient mass transport for high-performance proton exchange membrane fuel cells
    Wan, Xin
    Liu, Xiaofang
    Li, Yongcheng
    Yu, Ronghai
    Zheng, Lirong
    Yan, Wensheng
    Wang, Hui
    Xu, Ming
    Shui, Jianglan
    NATURE CATALYSIS, 2019, 2 (03) : 259 - 268
  • [30] Synthesis of High-Performance and Low-Loading PtCo/C Proton Exchange Membrane Fuel Cell Catalysts
    Zhao Xu-Yan
    Wu Yu-En
    CHINESE JOURNAL OF INORGANIC CHEMISTRY, 2021, 37 (08) : 1457 - 1464