Inverse design of ligands using a deep generative model semi-supervised by a data-driven ligand field strength metric

被引:0
|
作者
Lee, Zhi-Hang [1 ]
Lin, Po Chuan [1 ]
Yang, Tzuhsiung [1 ]
机构
[1] Natl Tsing Hua Univ, Dept Chem, Hsinchu, Taiwan
关键词
crystal structures; data-driven discovery; deep generative model; inorganic complexes; ligand field strength; machine learning; TRANSITION-METAL-COMPLEXES; CATALYSTS; SERIES; STATES; SCALE;
D O I
10.1002/jccs.202300066
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Transition metal (TM) complexes exhibit diverse structural and electronic properties. The properties of a TM complex can be tuned by modulating the ligand field strength (LFS) inflicted by its ligands. Current quantification of the LFS of a ligand is mainly derived from experimental measurements on a subset of highly symmetrical TM complexes and is limited in ligand scope. Herein, we report a data-driven method to quantify the LFS of ligands assigned from experimental crystal structures of TM complexes. We first show that the experimental metal-ligand bond lengths of over 4,000 mononuclear Fe, Co, and Mn complexes form bimodal distributions. Using Gaussian fits on the bimodal distributions, each TM complex is assigned a spin state (SS) label. These SS labels can then be used to calculate the LFS of the ligands of the complexes. Using the obtained data-driven LFS metric, we establish that a semi-supervised deep generative model, junction tree variational autoencoder (JTVAE), can be employed to predict LFS values. Our model exhibits a mean absolute error (MAE) of 0.047 and root mean squared error of 0.072 on the training set. The model also allows the generation of novel ligands with desirable LFS values.
引用
收藏
页码:1095 / 1101
页数:7
相关论文
共 50 条
  • [21] Feasibility of Data-driven EMG Signal Generation using a Deep Generative Model
    Campbell, Evan
    Cameron, James A. D.
    Scheme, Erik
    42ND ANNUAL INTERNATIONAL CONFERENCES OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY: ENABLING INNOVATIVE TECHNOLOGIES FOR GLOBAL HEALTHCARE EMBC'20, 2020, : 3755 - 3758
  • [22] Data-driven deep generative design of stable spintronic materials
    Siriwardane, Edirisuriya M. Dilanga
    Zhao, Yong
    Hu, Jianjun
    CRYSTENGCOMM, 2023, 25 (43) : 6017 - 6029
  • [23] Semi-supervised Deep Generative Modelling of Incomplete Multi-Modality Emotional Data
    Du, Changde
    Du, Changying
    Wang, Hao
    Li, Jinpeng
    Zheng, Wei-Long
    Lu, Bao-Liang
    He, Huiguang
    PROCEEDINGS OF THE 2018 ACM MULTIMEDIA CONFERENCE (MM'18), 2018, : 108 - 116
  • [24] A Distributed Semi-Supervised Platform for DNase-Seq Data Analytics using Deep Generative Convolutional Networks
    Shams, Shayan
    Platania, Richard
    Kim, Joohyun
    Zhang, Jian
    Lee, Kisung
    Yang, Seungwon
    Park, Seung-Jong
    ACM-BCB'18: PROCEEDINGS OF THE 2018 ACM INTERNATIONAL CONFERENCE ON BIOINFORMATICS, COMPUTATIONAL BIOLOGY, AND HEALTH INFORMATICS, 2018, : 244 - 253
  • [25] SEMI-SUPERVISED DEEP LEARNING SEISMIC IMPEDANCE INVERSION USING GENERATIVE ADVERSARIAL NETWORKS
    Meng, Delin
    Wu, Bangyu
    Liu, Naihao
    Chen, Wenchao
    IGARSS 2020 - 2020 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2020, : 1393 - 1396
  • [26] Semi-supervised learning for data-driven soft-sensing of biological and chemical processes
    Esche, Erik
    Talis, Torben
    Weigert, Joris
    Rihm, Gerardo Brand
    You, Byungjun
    Hoffmann, Christian
    Repke, Jens-Uwe
    CHEMICAL ENGINEERING SCIENCE, 2022, 251
  • [27] Data-Driven Derivation and Validation of Novel Phenotypes for Acute Kidney Transplant Rejection Using Semi-Supervised Clustering
    Vaulet, Thibaut
    Divard, Gillian
    Thaunat, Olivier
    Lerut, Evelyne
    Senev, Aleksandar
    Aubert, Olivier
    Van Loon, Elisabet
    Callemeyn, Jasper
    Emonds, Marie-Paule
    Van Craenenbroeck, Amaryllis
    De Vusser, Katrien
    Sprangers, Ben
    Rabeyrin, Maud
    Dubois, Valerie
    Kuypers, Dirk
    De Vos, Maarten
    Loupy, Alexandre
    De Moor, Bart
    Naesens, Maarten
    JOURNAL OF THE AMERICAN SOCIETY OF NEPHROLOGY, 2021, 32 (05): : 1084 - 1096
  • [28] Multiclass Anomaly Detection in Flight Data Using Semi-Supervised Explainable Deep Learning Model
    Memarzadeh, Milad
    Matthews, Bryan
    Templin, Thomas
    JOURNAL OF AEROSPACE INFORMATION SYSTEMS, 2021, 19 (02): : 83 - 97
  • [29] Data-driven bio-integrated design method encoded by biocomputational real-time feedback loop and deep semi-supervised learning (DSSL)
    Heidari, Farahbod
    Mahdavinejad, Mohammadjavad
    Zolotovsky, Katia
    Bemanian, Mohammadreza
    Journal of Building Engineering, 2024, 98
  • [30] Data-driven multifidelity topology design using a deep generative model: Application to forced convection heat transfer problems
    Yaji, Kentaro
    Yamasaki, Shintaro
    Fujita, Kikuo
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2022, 388