Electrically driven singlet-triplet transition in triangulene spin-1 chains

被引:8
|
作者
Martinez-Carracedo, Gabriel [1 ,2 ]
Oroszlany, Laszlo [3 ,4 ]
Garcia-Fuente, Amador [1 ,2 ]
Szunyogh, Laszlo [5 ,6 ]
Ferrer, Jaime [1 ,2 ]
机构
[1] Univ Oviedo, Dept Fis, Oviedo 33007, Spain
[2] Univ Oviedo, CSIC, Ctr Invest Nanomat & Nanotecnol, El Entrego 33940, Spain
[3] Eotvos Lorand Univ, Dept Phys Complex Syst, H-1117 Budapest, Hungary
[4] Budapest Univ Technol & Econ, MTA BME Lendulet Topol & Correlat Res Grp, Muegyetem rkp 3, H-1111 Budapest, Hungary
[5] Budapest Univ Technol & Econ, Inst Phys, Dept Theoret Phys, Muegyetem rkp 3, H-1111 Budapest, Hungary
[6] Budapest Univ Technol & Econ, ELKH BME Condensed Matter Res Grp, Muegyetem rkp 3, H-1111 Budapest, Hungary
关键词
Edge state - Experimental approaches - Magnetic force - Magnetic response - Singlet-triplet - Singlet-triplet transitions - Spin transition - Spin-rotations - Synthesised - Trigger and controls;
D O I
10.1103/PhysRevB.107.035432
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Recently, graphene triangulene chains have been synthesized, and their magnetic response has been analyzed by scanning tunneling microscopy methods by Mishra et al. [Nature (London) 598, 287 (2021)]. Motivated by this study, we determine the exchange bilinear and biquadratic constants of the triangulene chains by calculating two-spin rotations in the spirit of the magnetic force theorem. We then analyze open-ended, odd-numbered chains, whose edge states pair up forming a triplet ground state. We propose three experimental approaches that enable us to trigger and control a singlet-triplet spin transition. Two of these methods are based on applying a mechanical distortion to the chain. We finally show that the transition can be controlled efficiently by the application of an electric field.
引用
收藏
页数:5
相关论文
共 50 条
  • [41] 5350-A SINGLET-TRIPLET TRANSITION IN P-BENZOQUINONE
    HOLLAS, JM
    GOODMAN, L
    JOURNAL OF CHEMICAL PHYSICS, 1965, 43 (02): : 760 - &
  • [42] Perturbative theory of the non-equilibrium singlet-triplet transition
    Horvath, B.
    Lazarovits, B.
    Zarand, G.
    INTERNATIONAL CONFERENCE ON MAGNETISM (ICM 2009), 2010, 200
  • [43] Nonequilibrium transport theory of the singlet-triplet transition: Perturbative approach
    Horvath, B.
    Lazarovits, B.
    Zarand, G.
    PHYSICAL REVIEW B, 2010, 82 (16):
  • [44] Conduction through a quantum dot near a singlet-triplet transition
    Pustilnik, M
    Glazman, LI
    PHYSICAL REVIEW LETTERS, 2000, 85 (14) : 2993 - 2996
  • [45] A silicon singlet-triplet qubit driven by spin-valley coupling (vol 13, 641, 2022)
    Jock, Ryan M.
    Jacobson, N. Tobias
    Rudolph, Martin
    Ward, Daniel R.
    Carroll, Malcolm S.
    Luhman, Dwight R.
    NATURE COMMUNICATIONS, 2022, 13 (01)
  • [46] Quantum Monte Carlo study of singlet-triplet transition in ethylene
    El Akramine, O
    Kollias, AC
    Lester, WA
    JOURNAL OF CHEMICAL PHYSICS, 2003, 119 (03): : 1483 - 1488
  • [47] CHARACTERISTIC OF MAGNETIC ROTATION SPECTRA AT SINGLET-TRIPLET TRANSITION FREQUENCIES
    KIMURA, M
    KONDO, H
    HATTORI, S
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1965, 20 (10) : 1778 - &
  • [48] Inelastic cotunneling mediated singlet-triplet transition in carbon nanotubes
    Moriyama, S.
    Martinek, J.
    Ilnicki, G.
    Fuse, T.
    Ishibashi, K.
    PHYSICAL REVIEW B, 2009, 80 (03):
  • [49] Singlet-triplet gaps in large multireference systems: Spin-flip-driven alternatives for bioinorganic modeling
    de la Lande, Aurelien
    Moliner, Vicent
    Parisel, Olivier
    JOURNAL OF CHEMICAL PHYSICS, 2007, 126 (03):
  • [50] Dephasing of Si singlet-triplet qubits due to charge and spin defects
    Culcer, Dimitrie
    Zimmerman, Neil M.
    APPLIED PHYSICS LETTERS, 2013, 102 (23)