Multi-model adaptive fusion-based graph network for Alzheimer?s disease prediction

被引:11
|
作者
Yang, Fusheng [1 ]
Wang, Huabin [1 ]
Wei, Shicheng [2 ]
Sun, Guangming [1 ]
Chen, Yonglin [1 ]
Tao, Liang [1 ]
机构
[1] Anhui Univ, Anhui Prov Int Joint Res Ctr Adv Technol Med Imagi, Sch Comp Sci & Technol, Hefei 230601, Peoples R China
[2] Univ Sydney, Sch Elect & Informat Engn, Sydney 2006, Australia
基金
中国国家自然科学基金;
关键词
Alzheimer ? s disease prediction; Multi -model fusion; Computational medicine; Disease prediction algorithm;
D O I
10.1016/j.compbiomed.2022.106518
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Alzheimer's disease (AD) is a common cognitive disorder. Recently, many computer-aided diagnostic techniques have been used for AD prediction utilizing deep learning technology, among which graph neural networks have received increasing attention owing to their ability to model sample relationships on large population graphs. Most of the existing graph-based methods predict diseases according to a single model, which makes it difficult to select an appropriate node embedding algorithm for a certain classification task. Moreover, integrating data from different patterns into a unified model to improve the quality of disease diagnosis remains a challenge. Hence, in this study, we aimed to develop a multi-model fusion framework for AD prediction. A spectral graph attention model was used to aggregate intra-and inter-cluster node embeddings of normal and diseased populations, whereafter, a bilinear aggregation model was applied as an auxiliary model to enhance the abnormality degree in different categories of populations, and finally, an adaptive fusion module was designed to dynamically fuse the results of both models and enhance AD prediction. Compared to other comparison methods, the model proposed in this study provides the best results.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Navigation Trajectory Prediction Method of Inland Ships Based on Multi-model Fusion
    Zhang Y.
    Gao S.
    He W.
    Cai J.
    Zhongguo Jixie Gongcheng/China Mechanical Engineering, 2022, 33 (10): : 1142 - 1152
  • [32] Air quality PM2.5 prediction based on multi-model fusion
    Zhang, Bo
    Li, Xiaoli
    Zhao, Yanling
    Li, Yang
    Wang, Xinjian
    PROCEEDINGS OF THE 2019 31ST CHINESE CONTROL AND DECISION CONFERENCE (CCDC 2019), 2019, : 4426 - 4431
  • [33] Urban Rainfall Forecasting Method Based on Multi-model Prediction Information Fusion
    Huang, Liu
    Liu, Xuejun
    Wei, Heyi
    2020 THE 6TH IEEE INTERNATIONAL CONFERENCE ON INFORMATION MANAGEMENT (ICIM 2020), 2020, : 210 - 214
  • [34] Human Trajectory Prediction Using Similarity-Based Multi-Model Fusion
    Habibi, Golnaz
    How, Jonathan P.
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2021, 6 (02) : 715 - 722
  • [35] An effective method based on multi-model fusion for research octane number prediction
    Fu, Ningchen
    Lai, Zicheng
    Zhang, Yuping
    Ma, Yan
    NEW JOURNAL OF CHEMISTRY, 2021, 45 (21) : 9668 - 9676
  • [36] Research Octane Number Prediction Based on Feature Selection and Multi-Model Fusion
    Gu, Junlin
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2024, 15 (03) : 1145 - 1152
  • [37] Discrimination of Apple Origin and Prediction of SSC Based on Multi-Model Decision Fusion
    Jiang, Xiao-gang
    He, Cong
    Jiang, Nan
    Li, Li-sha
    Zhu, Ming-wang
    Liu, Yan-de
    SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44 (10) : 2812 - 2818
  • [38] Research on early diagnosis of Alzheimer's disease based on dual fusion cluster graph convolutional network
    Meng, Lu
    Zhang, Qianqian
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2023, 86
  • [39] An Alzheimer's Disease classification network based on MRI utilizing diffusion maps for multi-scale feature fusion in graph convolution
    Yang, Zhi
    Li, Kang
    Gan, Haitao
    Huang, Zhongwei
    Shi, Ming
    Zhou, Ran
    MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2024, 21 (01) : 1554 - 1572
  • [40] Trajectory Prediction Based on Multi-model and Multi-intent Fusion for Hypersonic Gliding Targets
    Li J.
    Guo J.
    Tang S.
    Yuhang Xuebao/Journal of Astronautics, 2024, 45 (02): : 167 - 180