Establishing a data-driven strength model for ??????-tin by performing symbolic regression using genetic programming

被引:6
|
作者
Zapiain, David Montes de Oca [1 ]
Lane, J. Matthew D. [1 ]
Carroll, Jay D. [1 ]
Casias, Zachary [1 ]
Battaile, Corbett C. [1 ]
Fensin, Saryu [2 ]
Lim, Hojun [1 ]
机构
[1] Sandia Natl Labs, Albuquerque, NM 87185 USA
[2] Los Alamos Natl Lab, Los Alamos, NM 87545 USA
关键词
Genetic programming; Tin; Strength; Symbolic regression; MODIFIED JOHNSON-COOK; MODIFIED ZERILLI-ARMSTRONG; HOT DEFORMATION-BEHAVIOR; CONSTITUTIVE MODELS; PLASTIC-DEFORMATION; STRAIN RATES; TEMPERATURE; PREDICT;
D O I
10.1016/j.commatsci.2022.111967
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Tin (Sn) exhibits complex deformation behavior characterized by significant dependence of strength on temperature and strain rate. This work develops a strength model for tin by using genetic programming to perform symbolic regression on a set of compression tests at various strain rates and temperatures. The strength model developed in this work showed increased accuracy compared to traditional strength models. Furthermore, the developed strength model adequately predicted independent experimental data (i.e., data that was not used to train the model). Results demonstrate that genetic programming successfully established a valid analytical function that adequately characterizes the temperature and strain rate dependent strength behavior of tin. Therefore, demonstrating that the developed framework provides robust and accurate formulations of strength models.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Data-driven discovery of formulas by symbolic regression
    Sun, Sheng
    Ouyang, Runhai
    Zhang, Bochao
    Zhang, Tong-Yi
    MRS BULLETIN, 2019, 44 (07) : 559 - 564
  • [2] Data-driven discovery of formulas by symbolic regression
    Sheng Sun
    Runhai Ouyang
    Bochao Zhang
    Tong-Yi Zhang
    MRS Bulletin, 2019, 44 : 559 - 564
  • [3] Symbolic Regression for Data-Driven Dynamic Model Refinement in Power Systems
    Saric, Andrija T.
    Saric, Aleksandar A.
    Transtrum, Mark K.
    Stankovic, Aleksandar M.
    IEEE TRANSACTIONS ON POWER SYSTEMS, 2021, 36 (03) : 2390 - 2402
  • [4] Data-driven HVAC Control Using Symbolic Regression: Design and Implementation
    Ozawa, Yuki
    Zhao, Dafang
    Watari, Daichi
    Taniguchi, Ittetsu
    Suzuki, Toshihiro
    Shimoda, Yoshiyuki
    Onoye, Takao
    2023 IEEE POWER & ENERGY SOCIETY GENERAL MEETING, PESGM, 2023,
  • [5] Development of interpretable, data-driven plasticity models with symbolic regression
    Bomarito, G. F.
    Townsend, T. S.
    Stewart, K. M.
    Esham, K., V
    Emery, J. M.
    Hochhalter, J. D.
    COMPUTERS & STRUCTURES, 2021, 252
  • [6] Development of a Generalizable Data-Driven Turbulence Model: Conditioned Field Inversion and Symbolic Regression
    Wu, Chenyu
    Zhang, Shaoguang
    Zhang, Yufei
    AIAA JOURNAL, 2025, 63 (02) : 687 - 706
  • [7] A symbolic data-driven technique based on evolutionary polynomial regression
    Giustolisi, Orazio
    Savic, Dragan A.
    JOURNAL OF HYDROINFORMATICS, 2006, 8 (03) : 207 - 222
  • [8] Counterexample-Driven Genetic Programming for Symbolic Regression With Formal Constraints
    Bladek, Iwo
    Krawiec, Krzysztof
    IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2023, 27 (05) : 1327 - 1339
  • [9] Data-Driven Identification of Crane Dynamics Using Regularized Genetic Programming
    Kusznir, Tom
    Smoczek, Jaroslaw
    Karwat, Boleslaw
    APPLIED SCIENCES-BASEL, 2024, 14 (08):
  • [10] Symbolic regression on noisy data with genetic and gene expression programming
    Bautu, E
    Bautu, A
    Luchian, H
    Seventh International Symposium on Symbolic and Numeric Algorithms for Scientific Computing, Proceedings, 2005, : 321 - 324