Learning representations for image-based profiling of perturbations

被引:7
|
作者
Moshkov, Nikita [1 ]
Bornholdt, Michael [2 ]
Benoit, Santiago [2 ,3 ]
Smith, Matthew [2 ,4 ]
Mcquin, Claire [2 ]
Goodman, Allen [2 ]
Senft, Rebecca A. [2 ]
Han, Yu [2 ]
Babadi, Mehrtash [2 ]
Horvath, Peter [1 ]
Cimini, Beth A. [2 ]
Carpenter, Anne E. [2 ]
Singh, Shantanu [2 ]
Caicedo, Juan C. [2 ,5 ,6 ]
机构
[1] HUN REN Biol Res Ctr, 62 Temesvar Krt, H-6726 Szeged, Hungary
[2] Broad Inst MIT & Harvard, 415 Main St, Cambridge, MA 02141 USA
[3] Carnegie Mellon Univ, 5000 Forbes Ave, Pittsburgh, PA 15213 USA
[4] Harvard Univ, 86 Brattle St, Cambridge, MA 02138 USA
[5] Morgridge Inst Res, 330 N Orchard St, Madison, WI 53715 USA
[6] Univ Wisconsin Madison, Dept Biostat & Med Informat, 1300 Univ Ave, Madison, WI 53706 USA
基金
欧盟地平线“2020”;
关键词
ASSAY;
D O I
10.1038/s41467-024-45999-1
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Measuring the phenotypic effect of treatments on cells through imaging assays is an efficient and powerful way of studying cell biology, and requires computational methods for transforming images into quantitative data. Here, we present an improved strategy for learning representations of treatment effects from high-throughput imaging, following a causal interpretation. We use weakly supervised learning for modeling associations between images and treatments, and show that it encodes both confounding factors and phenotypic features in the learned representation. To facilitate their separation, we constructed a large training dataset with images from five different studies to maximize experimental diversity, following insights from our causal analysis. Training a model with this dataset successfully improves downstream performance, and produces a reusable convolutional network for image-based profiling, which we call Cell Painting CNN. We evaluated our strategy on three publicly available Cell Painting datasets, and observed that the Cell Painting CNN improves performance in downstream analysis up to 30% with respect to classical features, while also being more computationally efficient. Assessing cell phenotypes in image-based assays requires solid computational methods for transforming images into quantitative data. Here, the authors present a strategy for learning representations of treatment effects from high-throughput imaging, following a causal interpretation.
引用
收藏
页数:17
相关论文
共 50 条
  • [31] Towards a Privacy Respecting Image-based User Profiling Component
    Galopoulos, Panagiotis
    Iakovidou, Chryssanthi
    Gkatziaki, Vasiliki
    Papadopoulos, Symeon
    Kompatsiaris, Yiannis
    2021 INTERNATIONAL CONFERENCE ON CONTENT-BASED MULTIMEDIA INDEXING (CBMI), 2021, : 17 - 22
  • [32] Cross-Cultural Image-Based Author Profiling in Twitter
    Feliciano-Avelino, Ivan
    Alvarez-Carmona, Miguel A.
    Jair Escalante, Hugo
    Montes-Y-Gomez, Manuel
    Villasenor-Pineda, Luis
    ADVANCES IN SOFT COMPUTING, MICAI 2019, 2019, 11835 : 353 - 363
  • [33] Evaluating batch correction methods for image-based cell profiling
    Arevalo, John
    Su, Ellen
    Ewald, Jessica D.
    Van Dijk, Robert
    Carpenter, Anne E.
    Singh, Shantanu
    NATURE COMMUNICATIONS, 2024, 15 (01)
  • [34] IMAGE-BASED USER PROFILING OF FREQUENT AND REGULAR VENUE CATEGORIES
    Shigenaka, Ryosuke
    Chen, Yan-Ying
    Chen, Francine
    Joshi, Dhiraj
    Tsuboshita, Yukihiro
    2017 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO (ICME), 2017, : 541 - 546
  • [35] Data-analysis strategies for image-based cell profiling
    Caicedo, Juan C.
    Cooper, Sam
    Heigwer, Florian
    Warchal, Scott
    Qiu, Peng
    Molnar, Csaba
    Vasilevich, Aliaksei S.
    Barry, Joseph D.
    Bansal, Harmanjit Singh
    Kraus, Oren
    Wawer, Mathias
    Paavolainen, Lassi
    Herrmann, Markus D.
    Rohban, Mohammad
    Hung, Jane
    Hennig, Holger
    Concannon, John
    Smith, Ian
    Clemons, Paul A.
    Singh, Shantanu
    Rees, Paul
    Horvath, Peter
    Linington, Roger G.
    Carpenter, Anne E.
    NATURE METHODS, 2017, 14 (09) : 849 - 863
  • [36] Cell Painting Gallery: an open resource for image-based profiling
    Weisbart, Erin
    Kumar, Ankur
    Arevalo, John
    Carpenter, Anne E.
    Cimini, Beth A.
    Singh, Shantanu
    NATURE METHODS, 2024, : 1775 - 1777
  • [37] Data-analysis strategies for image-based cell profiling
    Caicedo J.C.
    Cooper S.
    Heigwer F.
    Warchal S.
    Qiu P.
    Molnar C.
    Vasilevich A.S.
    Barry J.D.
    Bansal H.S.
    Kraus O.
    Wawer M.
    Paavolainen L.
    Herrmann M.D.
    Rohban M.
    Hung J.
    Hennig H.
    Concannon J.
    Smith I.
    Clemons P.A.
    Singh S.
    Rees P.
    Horvath P.
    Linington R.G.
    Carpenter A.E.
    Nature Methods, 2017, 14 (9) : 849 - 863
  • [38] Transfer Learning for Image-based Malware Classification
    Bhodia, Niket
    Prajapati, Pratikkumar
    Di Troia, Fabio
    Stamp, Mark
    PROCEEDINGS OF THE 5TH INTERNATIONAL CONFERENCE ON INFORMATION SYSTEMS SECURITY AND PRIVACY (ICISSP), 2019, : 719 - 726
  • [39] Recognition pest by image-based transfer learning
    Wang Dawei
    Deng Limiao
    Ni Jiangong
    Gao Jiyue
    Zhu Hongfei
    Han Zhongzhi
    JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE, 2019, 99 (10) : 4524 - 4531
  • [40] Continual Learning for Image-Based Camera Localization
    Wang, Shuzhe
    Laskar, Zakaria
    Melekhov, Iaroslav
    Li, Xiaotian
    Kannala, Juho
    2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, : 3232 - 3242