Graded extensions of generalized Haagerup categories

被引:0
|
作者
Grossman, Pinhas [1 ]
Izumi, Masaki [2 ]
Snyder, Noah [3 ]
机构
[1] Univ New South Wales, Sch Math & Stat, Sydney, NSW 2052, Australia
[2] Kyoto Univ, Grad Sch Sci, Dept Math, Sakyo Ku, Kyoto 6068502, Japan
[3] Indiana Univ, Dept Math, Rawles Hall, Bloomington, IN 47405 USA
基金
澳大利亚研究理事会;
关键词
FUSION CATEGORIES; SUBFACTORS; CLASSIFICATION; INDEX;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We classify certain Z(2)-graded extensions of generalized Haagerup categories in terms of numerical invariants satisfying polynomial equations. In particular, we construct a number of new examples of fusion categories, including: Z(2)-graded extensions of Z(2)n generalized Haagerup categories for all n <= 5; Z(2) xZ(2)-graded extensions of the Asaeda-Haagerup categories; and extensions of the Z(2) x Z(2) generalized Haagerup category by its outer automorphism group A4. The construction uses endomorphism categories of operator algebras, and in particular, free products of Cuntz algebras with free group C*-algebras.
引用
收藏
页码:2335 / 2408
页数:74
相关论文
共 50 条