Tangent spaces on the trianguline variety at companion points

被引:0
|
作者
Mowlavi, Seginus [1 ,2 ]
机构
[1] Univ Paris Saclay, CNRS, Lab Math Orsay, F-91405 Orsay, France
[2] Univ Paris Saclay, CNRS, Ctr Borelli, ENS Paris Saclay, F-75005 Gif Sur Yvette, France
来源
INDAGATIONES MATHEMATICAE-NEW SERIES | 2024年 / 35卷 / 01期
关键词
Trianguline variety; Crystalline representation; Refinement; (phi; F)-module; Eigenvariety; Flag variety; MODULAR-FORMS; REPRESENTATIONS; FAMILIES;
D O I
10.1016/j.indag.2023.10.007
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Many results about the geometry of the trianguline variety have been obtained by Breuil-Hellmann- Schraen. Among them, using geometric methods, they have computed a formula for the dimension of the tangent space of the trianguline variety at dominant crystalline generic points, which has a conjectural generalisation to companion (i.e. non -dominant) points. In an earlier work, they proved a weaker form of this formula under the assumption of modularity using arithmetic methods. We prove a generalisation of a result of Bellaiche-Chenevier in p-adic Hodge theory and use it to extend the arithmetic methods of Breuil-Hellmann-Schraen to a wide class of companion points. (c) 2023 Royal Dutch Mathematical Society (KWG). Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:181 / 204
页数:24
相关论文
共 50 条
  • [41] On the variety of Riesz spaces
    Labuschagne, C. C. A.
    van Alten, C. J.
    INDAGATIONES MATHEMATICAE-NEW SERIES, 2007, 18 (01): : 61 - 68
  • [42] Tangent lines and planes in topological spaces
    Torrance, Charles C.
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1937, 41 (1-3) : 193 - 207
  • [43] Lagrangians and higher order tangent spaces
    Popescu, Marcela
    Popescu, Paul
    BALKAN JOURNAL OF GEOMETRY AND ITS APPLICATIONS, 2010, 15 (01): : 142 - 148
  • [44] Tangent spaces of rational matrix functions
    Helmke, U
    Fuhrmann, PA
    LINEAR ALGEBRA AND ITS APPLICATIONS, 1998, 271 : 1 - 40
  • [45] Limits of spaces tangent to a normal surface
    Snoussi, J
    COMMENTARII MATHEMATICI HELVETICI, 2001, 76 (01) : 61 - 88
  • [46] SMOCKED METRIC SPACES AND THEIR TANGENT CONES
    Sormani, Christina
    Kazaras, Demetre
    Afrifa, David
    Antonetti, Victoria
    Dinowitz, Moshe
    Drillick, Hindy
    Farahzad, Maziar
    George, Shanell
    Hepburn, Aleah Lydeatte
    Huynh, Leslie Trang
    Minichiello, Emilio
    Pillati, Julinda Mujo
    Rendla, Srivishnupreeth
    Yamin, Ajmain
    MISSOURI JOURNAL OF MATHEMATICAL SCIENCES, 2021, 33 (01) : 27 - 98
  • [47] On tangent spaces to Schubert varieties, II
    Lakshmibai, V
    JOURNAL OF ALGEBRA, 2000, 224 (02) : 167 - 197
  • [48] Limits of tangent spaces to real surfaces
    O'Shea, DB
    Wilson, LC
    AMERICAN JOURNAL OF MATHEMATICS, 2004, 126 (05) : 951 - 980
  • [49] THE ENERGY SPACES OF THE TANGENT POINT ENERGIES
    Blatt, Simon
    JOURNAL OF TOPOLOGY AND ANALYSIS, 2013, 5 (03) : 261 - 270
  • [50] TANGENT STRATIFICATION OF PHI-SPACES
    STEPANOV, NA
    IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENII MATEMATIKA, 1983, (01): : 81 - 88