Tangent spaces on the trianguline variety at companion points

被引:0
|
作者
Mowlavi, Seginus [1 ,2 ]
机构
[1] Univ Paris Saclay, CNRS, Lab Math Orsay, F-91405 Orsay, France
[2] Univ Paris Saclay, CNRS, Ctr Borelli, ENS Paris Saclay, F-75005 Gif Sur Yvette, France
来源
INDAGATIONES MATHEMATICAE-NEW SERIES | 2024年 / 35卷 / 01期
关键词
Trianguline variety; Crystalline representation; Refinement; (phi; F)-module; Eigenvariety; Flag variety; MODULAR-FORMS; REPRESENTATIONS; FAMILIES;
D O I
10.1016/j.indag.2023.10.007
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Many results about the geometry of the trianguline variety have been obtained by Breuil-Hellmann- Schraen. Among them, using geometric methods, they have computed a formula for the dimension of the tangent space of the trianguline variety at dominant crystalline generic points, which has a conjectural generalisation to companion (i.e. non -dominant) points. In an earlier work, they proved a weaker form of this formula under the assumption of modularity using arithmetic methods. We prove a generalisation of a result of Bellaiche-Chenevier in p-adic Hodge theory and use it to extend the arithmetic methods of Breuil-Hellmann-Schraen to a wide class of companion points. (c) 2023 Royal Dutch Mathematical Society (KWG). Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:181 / 204
页数:24
相关论文
共 50 条
  • [1] A local model for the trianguline variety and applications
    Breuil, Christophe
    Hellmann, Eugen
    Schraen, Benjamin
    PUBLICATIONS MATHEMATIQUES DE L IHES, 2019, 130 (01): : 299 - 412
  • [2] A local model for the trianguline variety and applications
    Christophe Breuil
    Eugen Hellmann
    Benjamin Schraen
    Publications mathématiques de l'IHÉS, 2019, 130 : 299 - 412
  • [4] Finite Frame Varieties: Nonsingular Points, Tangent Spaces, and Explicit Local Parameterizations
    Strawn, Nate
    JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2011, 17 (05) : 821 - 853
  • [5] Finite Frame Varieties: Nonsingular Points, Tangent Spaces, and Explicit Local Parameterizations
    Nate Strawn
    Journal of Fourier Analysis and Applications, 2011, 17 : 821 - 853
  • [6] Characters of tangent spaces at torus fixed points and 3d-mirror symmetry
    Andrey Smirnov
    Hunter Dinkins
    Letters in Mathematical Physics, 2020, 110 : 2337 - 2352
  • [7] Characters of tangent spaces at torus fixed points and 3d-mirror symmetry
    Smirnov, Andrey
    Dinkins, Hunter
    LETTERS IN MATHEMATICAL PHYSICS, 2020, 110 (09) : 2337 - 2352
  • [8] Metric tangent spaces to Euclidean spaces
    Dordovski D.V.
    Journal of Mathematical Sciences, 2011, 179 (2) : 229 - 244
  • [9] TANGENT SPACES TO GENERAL METRIC SPACES
    Dovgoshey, Oleksiy
    Martio, Olli
    REVUE ROUMAINE DE MATHEMATIQUES PURES ET APPLIQUEES, 2011, 56 (02): : 137 - 155
  • [10] Geodesic spaces tangent to metric spaces
    V. V. Bilet
    Ukrainian Mathematical Journal, 2013, 64 : 1448 - 1456