Influences of arbuscular mycorrhizal fungi on crop growth and potentially toxic element accumulation in contaminated soils: A meta-analysis

被引:45
|
作者
Chen, Li [1 ,2 ]
Wang, Fayuan [3 ]
Zhang, Zhiqin [1 ,2 ]
Chao, Herong [1 ,2 ]
He, Haoran [1 ,2 ]
Hu, Weifang [4 ]
Zeng, Yi [1 ,2 ]
Duan, Chengjiao [2 ]
Liu, Ji [5 ,6 ]
Fang, Linchuan [1 ,2 ]
机构
[1] Northwest A&F Univ, Coll Nat Resources & Environm, Yangling, Peoples R China
[2] Inst Soil & Water Conservat CAS & MWR, State Key Lab soil Eros & Dryland Farming Loess Pl, Yangling, Peoples R China
[3] Qingdao Univ Sci & Technol, Coll Environm & Safety Engn, Qingdao, Peoples R China
[4] Guangdong Acad Agr Sci, Inst Agr Resources & Environm, Guangzhou, Peoples R China
[5] Cent China Normal Univ, Hubei Prov Key Lab Geog Proc Anal & Simulat, Wuhan, Peoples R China
[6] Leibniz Inst Freshwater Ecol & Inland Fisheries, Dept Ecohydrol, Berlin, Germany
基金
中国国家自然科学基金;
关键词
Arbuscular mycorrhizal fungi; potentially toxic elements; crop growth; bioaccumulation; physiological activities; meta-analysis; Jorg Rinklebe and Lena Q; Ma; HEAVY-METALS; TRANSPORTERS EXPRESSION; FUNNELIFORMIS-MOSSEAE; COMMUNITY STRUCTURE; AMF COLONIZATION; ORGANIC-MATTER; CADMIUM; PLANTS; SATIVA; CD;
D O I
10.1080/10643389.2023.2183700
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Soil pollution from potentially toxic elements (PTEs) is a serious environmental issue worldwide that affects agricultural safety and human health. Arbuscular mycorrhizal fungi (AMF), as ecosystem engineers, can alleviate PTE toxicity in crop plants. However, the comprehensive effects of AMF on crop performance in PTE-contaminated soils have not yet been recognized globally. Here, a meta-analysis of 153 studies with 3213 individual observations was conducted to evaluate the effects of AMF on the growth and PTE accumulation of five staple crops (wheat, rice, maize, soybean, and sorghum) in contaminated soils. Our results demonstrated that AMF had strong positive effects on the shoot and root biomass. This is because AMF can effectively alleviate oxidative damage induced by PTEs by stimulating photosynthesis, promoting nutrition, and activating non-enzymatic and enzymatic defense systems in crop plants. AMF also decreased shoot PTE accumulation by 23.6% and increased root PTE accumulation by 0.8%, demonstrating that AMF effectively inhibited the PTE transfer and uptake by crop shoot. Meanwhile, AMF-mediated effects on shoot PTE accumulation were weaker in soils with pH > 7.5. Overall, this global survey has essential implications on the ability of AMF to enhance crop performance in PTE-contaminated soils and provides insights into the guidelines for safe agricultural production worldwide.
引用
下载
收藏
页码:1795 / 1816
页数:22
相关论文
共 50 条
  • [21] Pathogenic Microbes Increase Plant Dependence on Arbuscular Mycorrhizal Fungi: A Meta-Analysis
    Qin, Mingsen
    Miranda, Jean-Pascal
    Tang, Yun
    Wei, Wangrong
    Liu, Yongjun
    Feng, Huyuan
    FRONTIERS IN PLANT SCIENCE, 2021, 12
  • [22] Arbuscular mycorrhizal fungi and antioxidant enzymes in ameliorating drought stress: a meta-analysis
    Chandrasekaran, Murugesan
    Paramasivan, Manivannan
    PLANT AND SOIL, 2022, 480 (1-2) : 295 - 303
  • [23] Arbuscular mycorrhizal fungi mitigate soil nitrogen and phosphorus losses: A meta-analysis
    Qiu, Qingyan
    Bender, S. Franz
    Mgelwa, Abubakari Said
    Hu, Yalin
    SCIENCE OF THE TOTAL ENVIRONMENT, 2022, 807
  • [24] Meta-Analysis of Interactions between Arbuscular Mycorrhizal Fungi and Biotic Stressors of Plants
    Yang, Haishui
    Dai, Yajun
    Wang, Xiaohua
    Zhang, Qian
    Zhu, Liqun
    Bian, Xinmin
    SCIENTIFIC WORLD JOURNAL, 2014,
  • [25] Application of manure and compost to contaminated soils and its effect on zinc accumulation by Solanum nigrum inoculated with arbuscular mycorrhizal fungi
    Marques, Ana P. G. C.
    Oliveira, Rui S.
    Rangel, Antonio O. S. S.
    Castro, Paula M. L.
    ENVIRONMENTAL POLLUTION, 2008, 151 (03) : 608 - 620
  • [26] Effects of arbuscular mycorrhizal inoculation on the phytoremediation of PAH-contaminated soil: A meta-analysis
    Shi, Yifan
    Wang, Simeng
    Guo, Jianing
    Xu, Zhongjun
    Wang, Shuguang
    Sang, Yimin
    CHEMOSPHERE, 2022, 307
  • [27] A meta-analysis of the effects of climate change on the mutualism between plants and arbuscular mycorrhizal fungi
    Duarte, Andre G.
    Maherali, Hafiz
    ECOLOGY AND EVOLUTION, 2022, 12 (01):
  • [28] Plant Salinity Tolerance Conferred by Arbuscular Mycorrhizal Fungi and Associated Mechanisms: A Meta-Analysis
    Dastogeer, Khondoker M. G.
    Zahan, Mst Ishrat
    Tahjib-Ul-Arif, Md.
    Akter, Mst Arjina
    Okazaki, Shin
    FRONTIERS IN PLANT SCIENCE, 2020, 11
  • [29] Allelopathic Effects of Foliar Epichloe Endophytes on Belowground Arbuscular Mycorrhizal Fungi: A Meta-Analysis
    Zhong, Rui
    Zhang, Lin
    Zhang, Xingxu
    AGRICULTURE-BASEL, 2022, 12 (11):
  • [30] Responses of Arbuscular Mycorrhizal Fungi Occurrence to Organic Fertilizer: A meta-analysis of field studies
    Jiang, Shangtao
    An, Xiangrui
    Shao, Yadong
    Kang, Yalong
    Chen, Tingsu
    Mei, Xinlan
    Dong, Caixia
    Xu, Yangchun
    Shen, Qirong
    PLANT AND SOIL, 2021, 469 (1-2) : 89 - 105