SAT-GCN: Self-attention graph convolutional network-based 3D object detection for autonomous driving

被引:46
|
作者
Wang, Li [1 ,2 ]
Song, Ziying [3 ]
Zhang, Xinyu [1 ,2 ]
Wang, Chenfei [1 ,2 ]
Zhang, Guoxin [4 ]
Zhu, Lei [5 ]
Li, Jun [1 ,2 ]
Liu, Huaping [6 ,7 ]
机构
[1] Tsinghua Univ, State Key Lab Automot Safety & Energy, Beijing 100084, Peoples R China
[2] Tsinghua Univ, Sch Vehicle & Mobil, Beijing 100084, Peoples R China
[3] Beijing Jiaotong Univ, Sch Comp & Informat Technol, Beijing 100044, Peoples R China
[4] Hebei Univ Sci & Technol, Sch Informat Sci & Engn, Shijiazhuang 050018, Peoples R China
[5] Mogo Auto Intelligence & Telemet Informat Technol, Beijing 100013, Peoples R China
[6] Tsinghua Univ, State Key Lab Intelligent Technol & Syst, Beijing 100084, Peoples R China
[7] Tsinghua Univ, Dept Comp Sci & Technol, Beijing 100084, Peoples R China
基金
国家高技术研究发展计划(863计划); 中国国家自然科学基金;
关键词
3D object detection; Graph convolutional network; Self-attention mechanism; VEHICLE DETECTION; POINT CLOUD; LIDAR;
D O I
10.1016/j.knosys.2022.110080
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Accurate 3D object detection from point clouds is critical for autonomous vehicles. However, point cloud data collected by LiDAR sensors are inherently sparse, especially at long distances. In addition, most existing 3D object detectors extract local features and ignore interactions between features, producing weak semantic information that significantly limits detection performance. We propose a self-attention graph convolutional network (SAT-GCN), which utilizes a GCN and self-attention to enhance semantic representations by aggregating neighborhood information and focusing on vital relationships. SAT-GCN consists of three modules: vertex feature extraction (VFE), self-attention with dimension reduction (SADR), and far distance feature suppression (FDFS). VFE extracts neighboring relationships between features using GCN after encoding a raw point cloud. SADR performs further weight augmentation for crucial neighboring relationships through self-attention. FDFS suppresses meaningless edges formed by sparse point cloud distributions in remote areas and generates corre-sponding global features. Extensive experiments are conducted on the widely used KITTI and nuScenes 3D object detection benchmarks. The results demonstrate significant improvements in mainstream methods, PointPillars, SECOND, and PointRCNN, improving the mean of AP 3D by 4.88%, 5.02%, and 2.79% on KITTI test dataset. SAT-GCN can boost the detection accuracy of the point cloud, especially at medium and long distances. Furthermore, adding the SAT-GCN module has a limited impact on the real-time performance and model parameters.(c) 2022 Elsevier B.V. All rights reserved.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] DuEqNet: Dual-Equivariance Network in Outdoor 3D Object Detection for Autonomous Driving
    Wang, Xihao
    Lei, Jaming
    Lan, Hai
    Al-Jawari, Arafat
    Wei, Xian
    [J]. 2023 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION, ICRA, 2023, : 6951 - 6957
  • [42] Adaptive Feature Fusion Based Cooperative 3D Object Detection for Autonomous Driving
    Wang, Junyong
    Zeng, Yuan
    Gong, Yi
    [J]. 2022 3RD INFORMATION COMMUNICATION TECHNOLOGIES CONFERENCE (ICTC 2022), 2022, : 103 - 107
  • [43] 3D Object Detection Method Combining on Graph Sampling and Graph Attention
    Li, Wenju
    Chu, Wanghui
    Cui, Liu
    Su, Pan
    Zhang, Gan
    [J]. Computer Engineering and Applications, 2023, 59 (09) : 237 - 244
  • [44] Survey on deep learning-based 3D object detection in autonomous driving
    Liang, Zhenming
    Huang, Yingping
    [J]. TRANSACTIONS OF THE INSTITUTE OF MEASUREMENT AND CONTROL, 2023, 45 (04) : 761 - 776
  • [45] Multi head self-attention gated graph convolutional network based multi-attack intrusion detection in MANET
    Reka, R.
    Karthick, R.
    Ram, R. Saravana
    Singh, Gurkirpal
    [J]. COMPUTERS & SECURITY, 2024, 136
  • [46] Stereo R-CNN based 3D Object Detection for Autonomous Driving
    Li, Peiliang
    Chen, Xiaozhi
    Shen, Shaojie
    [J]. 2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, : 7636 - 7644
  • [47] Joint 3D Instance Segmentation and Object Detection for Autonomous Driving
    Zhou, Dingfu
    Fang, Jin
    Song, Xibin
    Liu, Liu
    Yin, Junbo
    Dai, Yuchao
    Li, Hongdong
    Yang, Ruigang
    [J]. 2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2020, : 1836 - 1846
  • [48] A Survey on 3D Object Detection Methods for Autonomous Driving Applications
    Arnold, Eduardo
    Al-Jarrah, Omar Y.
    Dianati, Mehrdad
    Fallah, Saber
    Oxtoby, David
    Mouzakitis, Alex
    [J]. IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2019, 20 (10) : 3782 - 3795
  • [49] 3D Object Detection From Images for Autonomous Driving: A Survey
    Ma, Xinzhu
    Ouyang, Wanli
    Simonelli, Andrea
    Ricci, Elisa
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2024, 46 (05) : 3537 - 3556
  • [50] A survey on 3D object detection in real time for autonomous driving
    Contreras, Marcelo
    Jain, Aayush
    Bhatt, Neel P.
    Banerjee, Arunava
    Hashemi, Ehsan
    [J]. FRONTIERS IN ROBOTICS AND AI, 2024, 11