Multi-Physics and Multi-Objective Optimization for Fixing Cubic Fabry-Pérot Cavities Based on Data Learning

被引:0
|
作者
Zhao, Hang [1 ,2 ]
Meng, Fanchao [1 ,2 ]
Wang, Zhongge [1 ]
Yin, Xiongfei [1 ]
Meng, Lingqiang [1 ,3 ]
Jia, Jianjun [1 ,2 ,3 ,4 ]
机构
[1] Univ Chinese Acad Sci, Hangzhou Inst Adv Study, Key Lab Gravitat Wave Precis Measurement Zhejiang, Taiji Lab Gravitat Wave Universe,Sch Phys & Photoe, Hangzhou 310024, Peoples R China
[2] Chinese Acad Sci, Key Lab Space Act Optoelect Technol, Shanghai Inst Tech Phys, Shanghai 200083, Peoples R China
[3] Zhejiang Lab, Res Ctr Intelligent Sensing Syst, Hangzhou 311121, Peoples R China
[4] Univ Chinese Acad Sci, Sch Phys Sci, Beijing 100049, Peoples R China
来源
APPLIED SCIENCES-BASEL | 2023年 / 13卷 / 24期
基金
国家重点研发计划;
关键词
FP cavity; multi-physics coupling; finite element method; data learning; surrogate model; evolutionary algorithm; EMPIRICAL MODE DECOMPOSITION; LASER; STABILIZATION;
D O I
10.3390/app132413115
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The Fabry-Perot (FP) cavity is the essential component of an ultra-stable laser (USL) for gravitational wave detection, which couples multiple physics fields (optical/thermal/mechanical) and requires ultra-high precision. Aiming at the deficiency of the current single physical field optimization, a multi-physics and multi-objective optimization method for fixing the cubic FP cavity based on data learning is proposed in this paper. A multi-physics coupling model for the cubic FP cavity is established and the performance is obtained via finite element analysis. The key performance indices (V, wF, wF) and key design variables (d, l, F) are determined considering the features of the FP cavity. Different data learning models (NN, RSF, KRG) are established and compared based on 49 sets of data acquired by orthogonal experiments, with the results showing that the neural network has the best performance. NSGA-II is adopted as the optimization algorithm, the Pareto optimal front is obtained, and the optimal combination of design variables is finally determined as {5,32,250}. The performance after optimization proves to be greatly improved, with the displacement under the fixing force and vibration test both decreased by more than 60%. The proposed optimization strategy can help in the design of the FP cavity, and could enlighten other optimization fields as well.
引用
收藏
页数:16
相关论文
共 50 条
  • [31] A multi-objective artificial physics optimization algorithm based on ranks of individuals
    Yan Wang
    Jian-chao Zeng
    Soft Computing, 2013, 17 : 939 - 952
  • [32] A multi-objective artificial physics optimization algorithm based on ranks of individuals
    Wang, Yan
    Zeng, Jian-chao
    SOFT COMPUTING, 2013, 17 (06) : 939 - 952
  • [33] Multi-Objective Teaching-Learning-Based Optimization for Structure Optimization
    Kumar, Sumit
    Tejani, Ghanshyam G.
    Pholdee, Nantiwat
    Bureerat, Sujin
    Jangir, Pradeep
    SMART SCIENCE, 2022, 10 (01) : 56 - 67
  • [34] A Multi-objective Evolutionary Algorithm based on Decomposition for Constrained Multi-objective Optimization
    Martinez, Saul Zapotecas
    Coello, Carlos A. Coello
    2014 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2014, : 429 - 436
  • [35] Multi-objective Transmission Network Planning Based on Multi-objective Optimization Algorithms
    Wang Xiaoming
    Yan Jubin
    Huang Yan
    Chen Hanlin
    Zhang Xuexia
    Zang Tianlei
    Yu Zixuan
    2017 IEEE CONFERENCE ON ENERGY INTERNET AND ENERGY SYSTEM INTEGRATION (EI2), 2017,
  • [36] Decomposed Multi-objective Method Based on Q-Learning for Solving Multi-objective Combinatorial Optimization Problem
    Yang, Anju
    Liu, Yuan
    Zou, Juan
    Yang, Shengxiang
    BIO-INSPIRED COMPUTING: THEORIES AND APPLICATIONS, PT 1, BIC-TA 2023, 2024, 2061 : 59 - 73
  • [37] Multi-Objective Optimization Design and Multi-Physics Analysis a Double-Stator Permanent-Magnet Doubly Salient Machine
    Chen, Yunyun
    Ding, Yu
    Zhuang, Jiahong
    Zhu, Xiaoyong
    ENERGIES, 2018, 11 (08):
  • [38] Multi-Task Multi-View Learning Based on Cooperative Multi-Objective Optimization
    Zhou, Di
    Wang, Jun
    Jiang, Bin
    Guo, Hua
    Li, Yajun
    IEEE ACCESS, 2018, 6 : 19465 - 19477
  • [39] An Improved Multi-Objective Artificial Physics Optimization Algorithm Based on Multi-Strategy Fusion
    Sun, Bao
    Zhang, Lijing
    Li, Zhanlong
    Fan, Kai
    Jin, Qinqin
    Guo, Jin
    IEEE ACCESS, 2022, 10 : 108736 - 108748
  • [40] An Improved Multi-objective Optimization Algorithm Based on Reinforcement Learning
    Liu, Jun
    Zhou, Yi
    Qiu, Yimin
    Li, Zhongfeng
    ADVANCES IN SWARM INTELLIGENCE, ICSI 2022, PT I, 2022, : 501 - 513