Enhancing the accuracy of physics-informed neural network surrogates in flash calculations using sparse grid guidance

被引:2
|
作者
Wu, Yuanqing [1 ]
Sun, Shuyu [2 ]
机构
[1] Dongguan Univ Technol, Sch Comp Sci & Technol, Dongguan 523808, Guangdong, Peoples R China
[2] King Abdullah Univ Sci & Technol KAUST, Div Phys Sci & Engn PSE, Computat Transport Phenomena Lab CTPL, Thuwal 239556900, Saudi Arabia
关键词
Physics-informed neural networks; Flash calculations; Sparse grids; Compositional flows;
D O I
10.1016/j.fluid.2023.113984
中图分类号
O414.1 [热力学];
学科分类号
摘要
Flash calculations pose a significant performance bottleneck in compositional-flow simulations. While sparse grids have helped mitigate this bottleneck by shifting it to the offline stage, the accuracy of the surrogate model based on physics-informed neural networks (PINN) is still inferior to that of the sparse grid surrogate in many cases. To address this issue, we propose the sparse-grid guided PINN training algorithm. This approach involves rearranging the collocation points using sparse grids at each epoch to capture changes in the residual space. By doing so, the PINN surrogate achieves the required accuracy using the fewest collocation points possible, thereby avoiding potential performance bottlenecks. Moreover, the training time complexity of the sparse-grid guided PINN training is significantly lower compared to the normal training while maintaining the same level of accuracy. Consequently, the sparse-grid guided PINN training method enhances the accuracy of the PINN surrogate with minimal computational overhead. During the experiments, a flash calculation of methane-propane mixture is conducted using a PINN surrogate, guided by the principles of sparse grids. The collective experimental observations underscore the clear advantages of employing sparse-grid guided PINN training, showcasing superior outcomes in terms of convergence, stability, and accuracy.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] A dimension-augmented physics-informed neural network (DaPINN) with high level accuracy and efficiency
    Guan, Weilong
    Yang, Kaihan
    Chen, Yinsheng
    Liao, Shaolin
    Guan, Zhong
    JOURNAL OF COMPUTATIONAL PHYSICS, 2023, 491
  • [32] Physics-informed Neural Implicit Flow neural network for parametric PDEs
    Xiang, Zixue
    Peng, Wei
    Yao, Wen
    Liu, Xu
    Zhang, Xiaoya
    NEURAL NETWORKS, 2025, 185
  • [33] PHYSICS-INFORMED NEURAL NETWORK FOR INVERSE HEAT CONDUCTION PROBLEM
    Qian, Weijia
    Hui, Xin
    Wang, Bosen
    Zhang, Zongwei
    Lin, Yuzhen
    Yang, Siheng
    HEAT TRANSFER RESEARCH, 2023, 54 (04) : 65 - 76
  • [34] Physics-Informed Neural Network for Nonlinear Dynamics in Fiber Optics
    Jiang, Xiaotian
    Wang, Danshi
    Fan, Qirui
    Zhang, Min
    Lu, Chao
    Lau, Alan Pak Tao
    LASER & PHOTONICS REVIEWS, 2022, 16 (09)
  • [35] Anti-derivatives approximator for enhancing physics-informed neural networks
    Lee, Jeongsu
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2024, 426
  • [36] Acoustic scattering simulations via physics-informed neural network
    Nair, Siddharth
    Walsh, Timothy F.
    Pickrell, Gregory
    Semperlotti, Fabio
    SENSORS AND SMART STRUCTURES TECHNOLOGIES FOR CIVIL, MECHANICAL, AND AEROSPACE SYSTEMS 2024, 2024, 12949
  • [37] A Physics-Informed Neural Network approach for compartmental epidemiological models
    Millevoi, Caterina
    Pasetto, Damiano
    Ferronato, Massimiliano
    PLOS COMPUTATIONAL BIOLOGY, 2024, 20 (09)
  • [38] Predicting ocean pressure field with a physics-informed neural network
    Yoon, Seunghyun
    Park, Yongsung
    Gerstoft, Peter
    Seong, Woojae
    JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 2024, 155 (03): : 2037 - 2049
  • [39] Probabilistic physics-informed neural network for seismic petrophysical inversion
    Li, Peng
    Liu, Mingliang
    Alfarraj, Motaz
    Tahmasebi, Pejman
    Grana, Dario
    GEOPHYSICS, 2024, 89 (02) : M17 - M32
  • [40] A Physics-Informed Neural Network Approach for Nearfield Acoustic Holography
    Olivieri, Marco
    Pezzoli, Mirco
    Antonacci, Fabio
    Sarti, Augusto
    SENSORS, 2021, 21 (23)