Spatial bandgap tailoring via a novel injection chemical bath deposition enables highly efficient carbon-based Sb2(S,Se)3 thin film solar cells

被引:15
|
作者
Tang, Peng [1 ]
Huang, Zi-Heng [1 ]
Chen, You-Xian [1 ]
Li, Hu [1 ]
Yao, Li-Quan [1 ]
Li, Hui [1 ]
Lin, Li-Mei [1 ,2 ]
Cai, Jin-Rui [1 ]
Zhan, Ya-Lu [1 ]
Wei, Dong [1 ]
Chen, Shui-Yuan [1 ,2 ]
Chen, Da-Qin [1 ,2 ]
Chen, Gui-Lin [1 ,2 ]
机构
[1] Fujian Normal Univ, Coll Phys & Energy, Fujian Prov Engn Technol Res Ctr Solar Energy Conv, Fuzhou 350117, Peoples R China
[2] Fujian Prov Collaborat Innovat Ctr Adv High Field, Fuzhou 350117, Peoples R China
基金
中国国家自然科学基金;
关键词
CBD; Injection; V-shaped band gap; Sb2(S; Se)3; Solar cells; SB2SE3;
D O I
10.1016/j.cej.2023.146722
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
In recent years, significant progress has been made in the fabrication of sulfoselenide Sb2(S,Se)3 solar cells using a widely adopted hydrothermal method. However, the record efficiency is still far behind the theoretical values partly due to an unfavorable spatial bandgap distribution, which is induced by the complicated chalcogenide growth kinetics of the hydrothermal synthesis. Herein, a novel solution growth method, called Injection Chemical Bath Deposition (ICBD), is developed to prepare Sb2(S,Se)3 alloys for the first time. With this open CBD process, the selenium (Se) source is facilely incorporated during intermediate stages of reaction, and then successfully constructing a V-shaped bandgap via carefully tailoring the vertical gradients in chemical constituents, which synergistically enhances light absorption and carrier separation in the Sb2(S,Se)3 absorber. As a result, the solar cell with a full-inorganic FTO/CdS/Sb2(S,Se)3/Carbon structure achieves an impressive conversion efficiency of 7.63 %, which is among the highest efficiency of carbon-based Sb2(S,Se)3 solar cells based on CBD method. This study demonstrates a flexible strategy for manipulating the gradient band gap for highly efficient Sb2(S,Se)3 solar cells.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Sb2(Se1-xSx)3 Thin-Film Solar Cells Fabricated by Single-Source Vapor Transport Deposition
    Lu, Shuaicheng
    Zhao, Yang
    Wen, Xixing
    Xue, Ding-Jiang
    Chen, Chao
    Li, Kanghua
    Kondrotas, Rokas
    Wang, Chong
    Tang, Jiang
    SOLAR RRL, 2019, 3 (04)
  • [32] Evaporation of Eco-Friendly MoS2 Nanofilm for Interface Engineering in Carbon-Based Sb2(S,Se)3 Solar Cell
    Lin, Li-Mei
    Wu, Feng-Ying
    Huang, Zhi-Ping
    Yao, Li-Quan
    Li, Hu
    Liao, Ren-Yuan
    Chen, Ai-Cheng
    Li, Jian-Min
    Chen, Gui-Lin
    ACS APPLIED ENERGY MATERIALS, 2023, 6 (20): : 10415 - 10423
  • [33] Composition Engineering for the Content and Distribution of Sb-O, Se, S in Antimony Sulfoselenide Thin Films Using Chemical Bath Deposition for Efficient Solar Cells
    Wang, Zihao
    Shi, Chengwu
    Cao, Rui
    Lv, Kai
    Ye, Changsheng
    Chen, Wangchao
    Hu, Guiju
    Guo, Fuling
    Wang, Yanqing
    SOLAR RRL, 2024, 8 (04)
  • [34] A Novel Multi-Sulfur Source Collaborative Chemical Bath Deposition Technology Enables 8%-Efficiency Sb2S3 Planar Solar Cells
    Wang, Shaoying
    Zhao, Yuqi
    Che, Bo
    Li, Chuang
    Chen, Xueling
    Tang, Rongfeng
    Gong, Junbo
    Wang, Xiaomin
    Chen, Guilin
    Chen, Tao
    Li, Jianmin
    Xiao, Xudong
    ADVANCED MATERIALS, 2022, 34 (41)
  • [35] Spark plasma sintering of Sb2Se3 sputtering target towards highly efficient thin film solar cells
    Liang, Guangxing
    Chen, Xingye
    Tang, Rong
    Liu, Yike
    Li, Yingfen
    Luo, Ping
    Su, Zhenghua
    Zhang, Xianghua
    Fan, Ping
    Chen, Shuo
    Solar Energy Materials and Solar Cells, 2020, 211
  • [36] Spark plasma sintering of Sb2Se3 sputtering target towards highly efficient thin film solar cells
    Liang, Guangxing
    Chen, Xingye
    Tang, Rong
    Liu, Yike
    Li, Yingfen
    Luo, Ping
    Su, Zhenghua
    Zhang, Xianghua
    Fan, Ping
    Chen, Shuo
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2020, 211
  • [37] Characteristics of thin Sb2Se3 films obtained by the chemical molecular beam deposition method for thin-film solar cells
    Razykov, T. M.
    Kuchkarov, K. M.
    Tivanov, M. S.
    Bayko, D. S.
    Lyashenko, L. S.
    Ergashev, B. A.
    Mavlonov, A.
    Olimov, A. N.
    Khurramov, R.
    Isakov, D. Z.
    Pirimmatov, M.
    THIN SOLID FILMS, 2023, 774
  • [38] Optimisation of Sb2S3 thin-film solar cells via Sb2Se3 post-treatment
    Wang, Rui
    Qin, Deyang
    Ding, Xiaolei
    Zhang, Qipei
    Wang, Youyang
    Pan, Yanlin
    Weng, Guoen
    Hu, Xiaobo
    Tao, Jiahua
    Chu, Junhao
    Akiyama, Hidefumi
    Chen, Shaoqiang
    JOURNAL OF POWER SOURCES, 2023, 556
  • [39] Performance investigation of Sb2S3 and Sb2Se3 earth abundant based thin film solar cells
    Khadir, A.
    OPTICAL MATERIALS, 2022, 127
  • [40] Enhancement in the efficiency of Sb2(S,Se)3 thin-film solar cells with spin-coating NiOx as the hole transport layer
    Huang, Shan
    Xing, Yelei
    Zhu, Honcheng
    Zhang, Tingyu
    Geng, Kangjun
    Yang, Yusheng
    Zhang, Han
    Gu, Qingyan
    Qiu, Jianhua
    Jiang, Sai
    Guo, Huafei
    Yuan, Ningyi
    Ding, Jianning
    JOURNAL OF MATERIALS CHEMISTRY C, 2024, 12 (09) : 3098 - 3104