Single and multi-trait genomic prediction for agronomic traits in Euterpe edulis

被引:2
|
作者
Canal, Guilherme Bravim [1 ]
Valiati Barreto, Cynthia Aparecida [2 ]
Nogueira de Almeida, Francine Alves [1 ]
Zaidan, Iasmine Ramos [1 ]
do Couto, Diego Pereira [1 ]
Azevedo, Camila Ferreira [2 ]
Nascimento, Moyses [2 ]
da Silva Ferreira, Marcia Flores [1 ]
Ferreira, Adesio [1 ]
机构
[1] Univ Fed Espirito Santo, Dept Agron, Alegre, ES, Brazil
[2] Univ Fed Vicosa, Dept Stat, Vicosa, MG, Brazil
来源
PLOS ONE | 2023年 / 18卷 / 04期
关键词
PATH-ANALYSIS; SELECTION; POPULATION; YIELD;
D O I
10.1371/journal.pone.0275407
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Popularly known as jucaizeiro, Euterpe edulis has been gaining prominence in the fruit growing sector and has demanded the development of superior genetic materials. Since it is a native species and still little studied, the application of more sophisticated techniques can result in higher gains with less time. Until now, there are no studies that apply genomic prediction for this crop, especially in multi-trait analysis. In this sense, this study aimed to apply new methods and breeding techniques for the jucaizeiro, to optimize this breeding program through the application of genomic prediction. This data consisted of 275 jucaizeiro genotypes from a population of Rio Novo do Sul-ES, Brazil. The genomic prediction was performed using the multi-trait (G-BLUP MT) and single-trait (G-BLUP ST) models and the selection of superior genotypes was based on a selection index. Similar results for predictive ability were observed for both models. However, the G-BLUP ST model provided greater selection gains when compared to the G-BLUP MT. For this reason, the genomic estimated breeding values (GEBVs) from the G-BLUP ST, were used to select the six superior genotypes (UFES.A.RN.390, UFES.A.RN.386, UFES.A.RN.080, UFES.A.RN.383, UFES.S.RN.098, and UFES.S.RN.093). This was intended to provide superior genetic materials for the development of seedlings and implantation of productive orchards, which will meet the demands of the productive, industrial and consumer market.
引用
收藏
页数:19
相关论文
共 50 条
  • [21] Prediction Strategies for Leveraging Information of Associated Traits under Single- and Multi-Trait Approaches in Soybeans
    Persa, Reyna
    Bernardeli, Arthur
    Jarquin, Diego
    AGRICULTURE-BASEL, 2020, 10 (08): : 1 - 15
  • [22] Multi-trait genomic prediction in pigs using single and multistep methods based on the absorption of ungenotyped animals
    Luan, Tu
    Nordbo, Oyvind
    Andersen-Ranberg, Ina
    Meuwissen, Theo H. E.
    JOURNAL OF ANIMAL BREEDING AND GENETICS, 2023, 140 (05) : 473 - 484
  • [23] Multi-trait BLUP model indicates sorghum hybrids with genetic potential for agronomic and nutritional traits
    Almeida Filho, J. E.
    Tardin, F. D.
    Guimaraes, J. F. R.
    Resende, M. D. V.
    Silva, F. F.
    Simeone, M. L.
    Menezes, C. B.
    Queiroz, V. A. V.
    GENETICS AND MOLECULAR RESEARCH, 2016, 15 (01):
  • [24] Multi-trait single-step genomic prediction accounting for heterogeneous (co)variances over the genome
    Karaman, Emre
    Lund, Mogens S.
    Su, Guosheng
    HEREDITY, 2020, 124 (02) : 274 - 287
  • [25] Multi-trait genomic selection improves the prediction accuracy of end-use quality traits in hard winter wheat
    Gill, Harsimardeep S.
    Brar, Navreet
    Halder, Jyotirmoy
    Hall, Cody
    Seabourn, Bradford W.
    Chen, Yuanhong R.
    St Amand, Paul
    Bernardo, Amy
    Bai, Guihua
    Glover, Karl
    Turnipseed, Brent
    Sehgal, Sunish K.
    PLANT GENOME, 2023, 16 (04):
  • [26] Multi-Trait Genomic Prediction of Yield-Related Traits in US Soft Wheat under Variable Water Regimes
    Guo, Jia
    Khan, Jahangir
    Pradhan, Sumit
    Shahi, Dipendra
    Khan, Naeem
    Avci, Muhsin
    Mcbreen, Jordan
    Harrison, Stephen
    Brown-Guedira, Gina
    Murphy, Joseph Paul
    Johnson, Jerry
    Mergoum, Mohamed
    Esten Mason, Richanrd
    Ibrahim, Amir M. H.
    Sutton, Russel
    Griffey, Carl
    Babar, Md Ali
    GENES, 2020, 11 (11) : 1 - 26
  • [27] Genetic parameters and multi-trait genomic prediction for hemoparasites infection levels in cattle
    Romero, Andrea Renata da Silva
    do Nascimento, Andre Vieira
    Oliveira, Marcia Cristina de Sena
    Okino, Cintia Hiromi
    Braz, Camila Urbano
    Scalez, Daiane Cristina Becker
    Cardoso, Diercles Francisco
    Cardoso, Fernando Flores
    Gomes, Claudia Cristina Gulias
    Caetano, Alexandre Rodrigues
    Tonhati, Humberto
    Gondro, Cedric
    de Oliveria, Henrique Nunes
    LIVESTOCK SCIENCE, 2023, 273
  • [28] Multi-trait genomic prediction for nitrogen response indices in tropical maize hybrids
    Danilo Hottis Lyra
    Leandro de Freitas Mendonça
    Giovanni Galli
    Filipe Couto Alves
    Ítalo Stefanine Correia Granato
    Roberto Fritsche-Neto
    Molecular Breeding, 2017, 37
  • [29] Multi-trait genomic prediction for nitrogen response indices in tropical maize hybrids
    Lyra, Danilo Hottis
    Mendonca, Leandro de Freitas
    Galli, Giovanni
    Alves, Filipe Couto
    Correia Granato, Italo Stefanine
    Fritsche-Neto, Roberto
    MOLECULAR BREEDING, 2017, 37 (06)
  • [30] Prediction ability of an alternative multi-trait genomic evaluation for residual feed intake
    Pravia, Maria Isabel
    Navajas, Elly Ana
    Aguilar, Ignacio
    Ravagnolo, Olga
    JOURNAL OF ANIMAL BREEDING AND GENETICS, 2023, 140 (05) : 508 - 518