On p-harmonic self-maps of spheres

被引:1
|
作者
Branding, Volker [1 ]
Siffert, Anna [2 ]
机构
[1] Univ Vienna, Fac Math, Oskar Morgenstern Pl 1, A-1090 Vienna, Austria
[2] WWU Munster, Math Inst, Einsteinstr 62, D-48149 Munster, Germany
基金
奥地利科学基金会;
关键词
58E20; 53C43; HEAT-FLOW;
D O I
10.1007/s00526-023-02481-y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this manuscript we study rotationally p-harmonic maps between spheres. We prove that for (p) given, there exist infinitely many p-harmonic self-maps of S-m for each m ? N with p < m < 2 + p + 2vp. In the case of the identity map of S-m we explicitly determine the spectrum of the corresponding Jacobi operator and show that for p > m, the identity map of S-m is equivariantly stable when interpreted as a p-harmonic self-map of S-m.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] Equivariant vector fields and self-maps of spheres
    Costenoble, SR
    Waner, S
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2004, 187 (1-3) : 87 - 97
  • [32] A REMARK ON SELF-MAPS OF N-SPHERES
    GOHDE, D
    MATHEMATISCHE NACHRICHTEN, 1992, 155 : 275 - 277
  • [33] Gap phenomena for p-harmonic maps
    Matei, AM
    ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2000, 18 (06) : 541 - 554
  • [34] Stability of generalized P-harmonic maps
    Cherif, Ahmed mohammed
    CARPATHIAN JOURNAL OF MATHEMATICS, 2025, 41 (02) : 299 - 311
  • [35] Three spheres theorem for p-harmonic functions
    Miklyukov, Vladimir M.
    Rasila, Antti
    Vuorinen, Matti
    HOUSTON JOURNAL OF MATHEMATICS, 2007, 33 (04): : 1215 - 1230
  • [36] On the p-harmonic flow into spheres in the singular case
    Misawa, M
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2002, 50 (04) : 485 - 494
  • [37] On the Generalized of p-harmonic and f-harmonic Maps
    Remli, Embarka
    Cherif, Ahmed Mohammed
    KYUNGPOOK MATHEMATICAL JOURNAL, 2021, 61 (01): : 169 - 179
  • [38] Harmonic self-maps of cohomogeneity one manifolds
    Puettmann, Thomas
    Siffert, Anna
    MATHEMATISCHE ANNALEN, 2019, 375 (1-2) : 247 - 282
  • [39] Harmonic self-maps of cohomogeneity one manifolds
    Thomas Püttmann
    Anna Siffert
    Mathematische Annalen, 2019, 375 : 247 - 282
  • [40] On weakly p-harmonic maps to a closed hemisphere
    Ali Fardoun
    manuscripta mathematica, 2005, 116 : 57 - 69