On p-harmonic self-maps of spheres

被引:1
|
作者
Branding, Volker [1 ]
Siffert, Anna [2 ]
机构
[1] Univ Vienna, Fac Math, Oskar Morgenstern Pl 1, A-1090 Vienna, Austria
[2] WWU Munster, Math Inst, Einsteinstr 62, D-48149 Munster, Germany
基金
奥地利科学基金会;
关键词
58E20; 53C43; HEAT-FLOW;
D O I
10.1007/s00526-023-02481-y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this manuscript we study rotationally p-harmonic maps between spheres. We prove that for (p) given, there exist infinitely many p-harmonic self-maps of S-m for each m ? N with p < m < 2 + p + 2vp. In the case of the identity map of S-m we explicitly determine the spectrum of the corresponding Jacobi operator and show that for p > m, the identity map of S-m is equivariantly stable when interpreted as a p-harmonic self-map of S-m.
引用
收藏
页数:15
相关论文
共 50 条