Consumer-Centric Internet of Medical Things for Cyborg Applications Based on Federated Reinforcement Learning

被引:33
|
作者
Tiwari, Prayag [1 ]
Lakhan, Abdullah [2 ]
Jhaveri, Rutvij H. [3 ]
Gronli, Tor-Morten [2 ]
机构
[1] Halmstad Univ, Sch Informat Technol, S-30118 Halmstad, Sweden
[2] Kristiania Univ Coll, Sch Econ Innovat & Technol, N-210096 Oslo, Norway
[3] Pandit Deendayal Energy Univ, Sch Technol, Dept Comp Sci & Engn, Gandhinagar 382007, India
关键词
Medical services; Man-machine systems; Task analysis; Mathematical models; Federated learning; Sockets; Delays; Consumer-centric; IoMT; federated learning; reinforcement learning; healthcare;
D O I
10.1109/TCE.2023.3242375
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The Internet of Medical Things (IoMT) is the new digital healthcare application paradigm that offers many healthcare services to users. IoMT-based emerging healthcare applications such as cyborgs, the combination of advanced artificial intelligence (AI) robots, and doctors performing surgical operations remotely from hospitals to patients in their homes. For instance, robot-based knee replacement procedures, and thigh medical care real-time performance monitoring systems are cyborg applications. The paper introduces the multi-agent federated reinforcement learning policy (MFRLP) indicated in mobile and fog agents based on the socket remote procedure call (RPC) paradigm. The goal is to design a consumer-centric cyborg-efficient training testing system that executes the overall application mechanism with minimum delays in the IoMT system. The study develops the RPC based on reinforcement learning and federated learning that adopts dynamic changes in the environment for cyborg applications. As a result, MFRLP minimized the training and testing in the mobile and fog environments by 50%, local processing time by 40%, and processing time by 50% compared to existing machine learning (ML) methods for cyborg applications. The code is publicly available at https://github.com/prayagtiwari/CIoMT.
引用
收藏
页码:756 / 764
页数:9
相关论文
共 50 条
  • [21] Dynamic Spectrum Access for Internet-of-Things Based on Federated Deep Reinforcement Learning
    Li, Feng
    Shen, Bowen
    Guo, Jiale
    Lam, Kwok-Yan
    Wei, Guiyi
    Wang, Li
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2022, 71 (07) : 7952 - 7956
  • [22] A Federated Learning-Based Patient Monitoring System in Internet of Medical Things
    Singh, Chitranjan
    Mishra, Rahul
    Gupta, Hari Prabhat
    Banga, Garvit
    IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS, 2023, 10 (04) : 1622 - 1628
  • [23] FedSarah: A Novel Low-Latency Federated Learning Algorithm for Consumer-Centric Personalized Recommendation Systems
    Qu, Zhiguo
    Ding, Jian
    Jhaveri, Rutvij H.
    Djenouri, Youcef
    Ning, Xin
    Tiwari, Prayag
    IEEE TRANSACTIONS ON CONSUMER ELECTRONICS, 2024, 70 (01) : 2675 - 2686
  • [24] Hierarchical Federated Learning With Social Context Clustering-Based Participant Selection for Internet of Medical Things Applications
    Zhou, Xiaokang
    Ye, Xiaozhou
    Wang, Kevin I-Kai
    Liang, Wei
    Nair, Nirmal Kumar C.
    Shimizu, Shohei
    Yan, Zheng
    Jin, Qun
    IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS, 2023, 10 (04) : 1742 - 1751
  • [25] Multiagent Federated Reinforcement Learning for Resource Allocation in UAV-Enabled Internet of Medical Things Networks
    Seid, Abegaz Mohammed
    Erbad, Aiman
    Abishu, Hayla Nahom
    Albaseer, Abdullatif
    Abdallah, Mohamed
    Guizani, Mohsen
    IEEE INTERNET OF THINGS JOURNAL, 2023, 10 (22) : 19695 - 19711
  • [26] Data privacy model using blockchain reinforcement federated learning approach for scalable internet of medical things
    Dhasaratha, Chandramohan
    Hasan, Mohammad Kamrul
    Islam, Shayla
    Khapre, Shailesh
    Abdullah, Salwani
    Ghazal, Taher M.
    Alzahrani, Ahmed Ibrahim
    Alalwan, Nasser
    Vo, Nguyen
    Akhtaruzzaman, Md
    CAAI TRANSACTIONS ON INTELLIGENCE TECHNOLOGY, 2024,
  • [27] Federated transfer learning for attack detection for Internet of Medical Things
    Alharbi, Afnan A.
    INTERNATIONAL JOURNAL OF INFORMATION SECURITY, 2024, 23 (01) : 81 - 100
  • [28] Securing Internet of Medical Things: An Advanced Federated Learning Approach
    Misbah, Anass
    Sebbar, Anass
    Hafidi, Imad
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2025, 16 (02) : 1305 - 1316
  • [29] A Preliminary Scoping Study of Federated Learning for the Internet of Medical Things
    Farhad, Arshad
    Woolley, Sandra I.
    Andras, Peter
    PUBLIC HEALTH AND INFORMATICS, PROCEEDINGS OF MIE 2021, 2021, 281 : 504 - 505
  • [30] Federated Learning for Privacy-Preserved Medical Internet of Things
    Thilakarathne, Navod Neranjan
    Muneeswari, G.
    Parthasarathy, V
    Alassery, Fawaz
    Hamam, Habib
    Mahendran, Rakesh Kumar
    Shafiq, Muhammad
    INTELLIGENT AUTOMATION AND SOFT COMPUTING, 2022, 33 (01): : 157 - 172