An introductory review on the application of principal component analysis in the data exploration of the chemical analysis of food samples

被引:9
|
作者
Souza, Anderson Santos [1 ,4 ]
Bezerra, Marcos Almeida [2 ]
Cerqueira, Uillian Mozart Ferreira Mata [3 ]
Rodrigues, Caiene Jesus Oliveira [1 ]
Santos, Bianca Cotrim [1 ]
Novaes, Cleber Galvao [2 ]
Almeida, Erica Raina Venancio [2 ]
机构
[1] Univ Fed Bahia, Inst Multidisciplinar Saude, Campus Anisio Teixeira,Rua Hormindo Barros 58, BR-45029094 Vitoria da Conquista, BA, Brazil
[2] Univ Estadual Sudoeste Bahia, Dept Ciencias & Tecnol, Campus Jequie,Rua Jose Moreira Sobrinho, BR-45206190 Jequie, BA, Brazil
[3] Univ Fed Bahia, Inst Quim, Campus Federacao Ondina,Rua Barao Geremoabo, BR-40170115 Salvador, BA, Brazil
[4] Univ Fed Bahia, Inst Nacl Ciencia & Tecnol Energia & Ambiente INCT, BR-40170115 Salvador, BA, Brazil
关键词
Principal component analysis; Multivariate analysis; Food samples; HIERARCHICAL CLUSTER-ANALYSIS; MINERAL-CONTENT; CLASSIFICATION; SPECTROSCOPY; ACIDS; TEA;
D O I
10.1007/s10068-023-01509-5
中图分类号
TS2 [食品工业];
学科分类号
0832 ;
摘要
Principal component analysis (PCA) is currently one of the most used multivariate data analysis techniques for evaluating information from food analysis. In this review, a brief introduction to the theoretical principles that underlie PCA will be given, in addition to presenting the most commonly used computer programs. An example from the literature was discussed to illustrate the use of this chemometric tool and interpretation of graphs and parameters obtained. A list of recently published articles will also be presented, in order to show the applicability and potential of the technique in the food analysis field.
引用
收藏
页码:1323 / 1336
页数:14
相关论文
共 50 条
  • [31] Principal Component Analysis of Thermographic Data
    Winfree, William P.
    Cramer, K. Elliott
    Zalameda, Joseph N.
    Howell, Patricia A.
    Burke, Eric R.
    THERMOSENSE: THERMAL INFRARED APPLICATIONS XXXVII, 2015, 9485
  • [32] Principal component analysis with autocorrelated data
    Zamprogno, Bartolomeu
    Reisen, Valderio A.
    Bondon, Pascal
    Aranda Cotta, Higor H.
    Reis Jr, Neyval C.
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2020, 90 (12) : 2117 - 2135
  • [33] Principal component analysis on interval data
    Federica Gioia
    Carlo N. Lauro
    Computational Statistics, 2006, 21 : 343 - 363
  • [34] PRINCIPAL COMPONENT ANALYSIS OF EPIDEMIOLOGICAL DATA
    OSAKI, J
    ISHII, F
    IWAMOTO, S
    SHINBO, S
    BIOMETRICS, 1982, 38 (04) : 1101 - 1101
  • [35] PRINCIPAL COMPONENT ANALYSIS OF COMPOSITIONAL DATA
    AITCHISON, J
    BIOMETRIKA, 1983, 70 (01) : 57 - 65
  • [36] PRINCIPAL COMPONENT ANALYSIS OF PRODUCTION DATA
    WILLIAMS, JH
    RADIO AND ELECTRONIC ENGINEER, 1974, 44 (09): : 473 - 480
  • [37] Synthetic Data by Principal Component Analysis
    Sano, Natsuki
    20TH IEEE INTERNATIONAL CONFERENCE ON DATA MINING WORKSHOPS (ICDMW 2020), 2020, : 101 - 105
  • [38] Principal component analysis on interval data
    Gioia, Federica
    Lauro, Carlo N.
    COMPUTATIONAL STATISTICS, 2006, 21 (02) : 343 - 363
  • [39] Principal component analysis for interval data
    Billard, L.
    Le-Rademacher, J.
    WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL STATISTICS, 2012, 4 (06): : 535 - 540
  • [40] Principal component analysis of hydrologic data
    Rao, AR
    Burke, TT
    INTEGRATED APPROACH TO ENVIRONMENTAL DATA MANAGEMENT SYSTEMS, 1997, 31 : 275 - 290