Gct-TTE: graph convolutional transformer for travel time estimation

被引:1
|
作者
Mashurov, Vladimir [1 ]
Chopuryan, Vaagn [1 ]
Porvatov, Vadim [1 ,2 ]
Ivanov, Arseny [2 ]
Semenova, Natalia [1 ,3 ]
机构
[1] PJSC Sberbank, Vavilova St, Moscow 117312, Russia
[2] Natl Univ Sci & Technol MISiS, Lenin Ave 4, Moscow 119049, Russia
[3] Artificial Intelligence Res Inst, Nizhny Susalny Lane 5, Moscow 105064, Russia
关键词
Machine learning; Graph convolutional networks; Transformers; Geospatial data; Travel time estimation;
D O I
10.1186/s40537-023-00841-1
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
This paper introduces a new transformer-based model for the problem of travel time estimation. The key feature of the proposed GCT-TTE architecture is the utilization of different data modalities capturing different properties of an input path. Along with the extensive study regarding the model configuration, we implemented and evaluated a sufficient number of actual baselines for path-aware and path-blind settings. The conducted computational experiments have confirmed the viability of our pipeline, which outperformed state-of-the-art models on both considered datasets. Additionally, GCT-TTE was deployed as a web service accessible for further experiments with user-defined routes.
引用
收藏
页数:14
相关论文
共 50 条
  • [41] CATNet: Convolutional attention and transformer for monocular depth estimation
    Tang, Shuai
    Lu, Tongwei
    Liu, Xuanxuan
    Zhou, Huabing
    Zhang, Yanduo
    PATTERN RECOGNITION, 2024, 145
  • [42] Prediction for Dissolved Gas in Power Transformer Oil Based on Temporal Convolutional and Graph Convolutional Network
    Zai, Hongtao
    Chen, Wengang
    He, Hongying
    Lee, Wei-Jen
    Zhang, Zhenyuan
    Zhang, Ke
    Fang, Jie
    Luo, Diansheng
    2021 IEEE IAS INDUSTRIAL AND COMMERCIAL POWER SYSTEM ASIA (IEEE I&CPS ASIA 2021), 2021, : 1160 - 1168
  • [43] An Intelligent Adaptive Spatiotemporal Graph Approach for GPS-Data Based Travel Time Estimation
    Xu, Mengyun
    Fang, Jie
    Tong, Yingfang
    IEEE INTELLIGENT TRANSPORTATION SYSTEMS MAGAZINE, 2022, 14 (05) : 222 - 237
  • [44] AGCNT: Adaptive Graph Convolutional Network for Transformer-based Long Sequence Time-Series Forecasting
    Su, Hongyang
    Wang, Xiaolong
    Qin, Yang
    PROCEEDINGS OF THE 30TH ACM INTERNATIONAL CONFERENCE ON INFORMATION & KNOWLEDGE MANAGEMENT, CIKM 2021, 2021, : 3439 - 3442
  • [45] Deformable graph convolutional transformer for skeleton-based action recognition
    Chen, Shuo
    Xu, Ke
    Zhu, Bo
    Jiang, Xinghao
    Sun, Tanfeng
    APPLIED INTELLIGENCE, 2023, 53 (12) : 15390 - 15406
  • [46] Incorporating Locality into Vision Transformer Via Spectral Graph Convolutional Network
    Jin, Longbin
    Kim, Eun Yi
    SSRN, 2022,
  • [47] Dual Graph Convolutional Networks with Transformer and Curriculum Learning for Image Captioning
    Dong, Xinzhi
    Long, Chengjiang
    Xu, Wenju
    Xiao, Chunxia
    PROCEEDINGS OF THE 29TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2021, 2021, : 2615 - 2624
  • [48] Deformable graph convolutional transformer for skeleton-based action recognition
    Shuo Chen
    Ke Xu
    Bo Zhu
    Xinghao Jiang
    Tanfeng Sun
    Applied Intelligence, 2023, 53 : 15390 - 15406
  • [49] A Graph Convolutional Network for Session Recommendation Model Based on Improved Transformer
    Zhang, Xiaoyan
    Wang, Teng
    IEEE ACCESS, 2023, 11 : 77729 - 77736
  • [50] Learning the Graphical Structure of Electronic Health Records with Graph Convolutional Transformer
    Choi, Edward
    Xu, Zhen
    Li, Yujia
    Dusenberry, Michael W.
    Flores, Gerardo
    Xue, Yuan
    Dai, Andrew M.
    THIRTY-FOURTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THE THIRTY-SECOND INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE AND THE TENTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2020, 34 : 606 - 613