A latent space accumulator model for response time: Applications to cognitive assessment data

被引:0
|
作者
Jin, Ick Hoon [1 ,2 ,5 ]
Yun, Jonghyun [3 ]
Kim, Hyunjoo [1 ,2 ]
Jeon, Minjeong [4 ]
机构
[1] Yonsei Univ, Dept Appl Stat, Seoul, South Korea
[2] Yonsei Univ, Dept Stat & Data Sci, Seoul, South Korea
[3] Inst Stat Data Intelligence, Mansfield, TX USA
[4] Univ Calif Los Angeles, Sch Educ & Informat Studies, Los Angeles, CA USA
[5] Yonsei Univ, Dept Appl Stat, Dept Stat & Data Sci, Seoul, South Korea
来源
STAT | 2023年 / 12卷 / 01期
基金
新加坡国家研究基金会;
关键词
cognitive assessment data; competing risk models; latent space item response model; proportional hazard models; response time; CHOICE; SPEED; TESTS; FRAMEWORK; ACCURACY;
D O I
10.1002/sta4.632
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Response time has attracted increased interest in educational and psychological assessment for, for example, measuring test takers' processing speed, improving the measurement accuracy of ability and understanding aberrant response behaviour. Most models for response time analysis are based on a parametric assumption about the response time distribution. The Cox proportional hazard model has been utilized for response time analysis for the advantages of not requiring a distributional assumption of response time and enabling meaningful interpretations with respect to response processes. In this paper, we present a new version of the proportional hazard model, called a latent space accumulator model, for cognitive assessment data based on accumulators for two competing response outcomes, such as correct versus incorrect responses. The proposed model extends a previous accumulator model by capturing dependencies between respondents and test items across accumulators in the form of distances in a two-dimensional Euclidean space. A fully Bayesian approach is developed to estimate the proposed model. The utilities of the proposed model are illustrated with two real data examples.
引用
收藏
页数:18
相关论文
共 50 条
  • [11] The Quality of Response Time Data Inference: A Blinded, Collaborative Assessment of the Validity of Cognitive Models
    Gilles Dutilh
    Jeffrey Annis
    Scott D. Brown
    Peter Cassey
    Nathan J. Evans
    Raoul P. P. P. Grasman
    Guy E. Hawkins
    Andrew Heathcote
    William R. Holmes
    Angelos-Miltiadis Krypotos
    Colin N. Kupitz
    Fábio P. Leite
    Veronika Lerche
    Yi-Shin Lin
    Gordon D. Logan
    Thomas J. Palmeri
    Jeffrey J. Starns
    Jennifer S. Trueblood
    Leendert van Maanen
    Don van Ravenzwaaij
    Joachim Vandekerckhove
    Ingmar Visser
    Andreas Voss
    Corey N. White
    Thomas V. Wiecki
    Jörg Rieskamp
    Chris Donkin
    Psychonomic Bulletin & Review, 2019, 26 : 1051 - 1069
  • [12] A Doubly Latent Space Joint Model for Local Item and Person Dependence in the Analysis of Item Response Data
    Jin, Ick Hoon
    Jeon, Minjeong
    PSYCHOMETRIKA, 2019, 84 (01) : 236 - 260
  • [13] A Doubly Latent Space Joint Model for Local Item and Person Dependence in the Analysis of Item Response Data
    Ick Hoon Jin
    Minjeong Jeon
    Psychometrika, 2019, 84 : 236 - 260
  • [14] The Quality of Response Time Data Inference: A Blinded, Collaborative Assessment of the Validity of Cognitive Models
    Dutilh, Gilles
    Annis, Jeffrey
    Brown, Scott D.
    Cassey, Peter
    Evans, Nathan J.
    Grasman, Raoul P. P. P.
    Hawkins, Guy E.
    Heathcote, Andrew
    Holmes, William R.
    Krypotos, Angelos-Miltiadis
    Kupitz, Colin N.
    Leite, Fabio P.
    Lerche, Veronika
    Lin, Yi-Shin
    Logan, Gordon D.
    Palmeri, Thomas J.
    Starns, Jeffrey J.
    Trueblood, Jennifer S.
    van Maanen, Leendert
    van Ravenzwaaij, Don
    Vandekerckhove, Joachim
    Visser, Ingmar
    Voss, Andreas
    White, Corey N.
    Wiecki, Thomas V.
    Rieskamp, Joerg
    Donkin, Chris
    PSYCHONOMIC BULLETIN & REVIEW, 2019, 26 (04) : 1051 - 1069
  • [15] Latent Space Model for Multi-Modal Social Data
    Cho, Yoon-Sik
    Ver Steeg, Greg
    Ferrara, Emilio
    Galstyan, Aram
    PROCEEDINGS OF THE 25TH INTERNATIONAL CONFERENCE ON WORLD WIDE WEB (WWW'16), 2016, : 447 - 458
  • [16] Cognitive Aging Data Will Take Time Response
    Greenfield, Patricia M.
    SCIENCE, 2009, 325 (5938) : 265 - 266
  • [17] Latent class model for mixed variables with applications to text data
    Shin, Hyun Soo
    Seo, Byungtae
    KOREAN JOURNAL OF APPLIED STATISTICS, 2019, 32 (06) : 837 - 849
  • [18] A cognitive latent variable model for the simultaneous analysis of behavioral and personality data
    Vandekerckhove, Joachim
    JOURNAL OF MATHEMATICAL PSYCHOLOGY, 2014, 60 : 58 - 71
  • [19] NORMAL OGIVE MODEL ON CONTINUOUS RESPONSE LEVEL IN MULTIDIMENSIONAL LATENT SPACE
    SAMEJIMA, F
    PSYCHOMETRIKA, 1974, 39 (01) : 111 - 121
  • [20] Getting more from accuracy and response time data: Methods for fitting the linear ballistic accumulator
    Chris Donkin
    Lee Averell
    Scott Brown
    Andrew Heathcote
    Behavior Research Methods, 2009, 41 : 1095 - 1110