Human tracking from quantised sensors: An application to safe human-robot collaboration

被引:1
|
作者
Zanchettin, Andrea Maria [1 ]
机构
[1] Politecn Milan, Dipartimento Elettron Informaz & Bioingn, Piazza Leonardo Da Vinci 32, Milan, Italy
关键词
Human-robot collaboration; Safety; Industrial robotics; Human detection and tracking; SPEED;
D O I
10.1016/j.conengprac.2023.105727
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The proliferation of cage-less robotic applications is justifying this research which proposes a method to process the output of safety sensors with the aim of maximising the productivity of the robot in a collaborative scenario. Particularly, the Speed and Separation Monitoring (SSM) strategy, which prescribes the robot to reduce its speed proportionally to the vicinity of the human, will be investigated. In state-of-the-art industrial implementations, SSM is implemented in a very conservative way, without exploiting the capabilities of modern sensing devices. This work proposes a methodology to improve the performance of SSM algorithms while dealing finite and quantised 2D cost-effective sensing capabilities. The strategy is verified experimentally as applied on a palletising application with a COMAU SMARTSix industrial robot, showing slightly improved performance with respect to standard practice.
引用
收藏
页数:7
相关论文
共 50 条
  • [41] Working Together: A Review on Safe Human-Robot Collaboration in Industrial Environments
    Robla-Gomez, S.
    Becerra, Victor M.
    Llata, J. R.
    Gonzalez-Sarabia, E.
    Torre-Ferrero, C.
    Perez-Oria, J.
    IEEE ACCESS, 2017, 5 : 26754 - 26773
  • [42] Enhancing Safe Human-Robot Collaboration through Natural Multimodal Communication
    Maurtua, Inaki
    Fernandez, Izaskun
    Kildal, Johan
    Susperregi, Loreto
    Tellaeche, Alberto
    Ibarguren, Aitor
    2016 IEEE 21ST INTERNATIONAL CONFERENCE ON EMERGING TECHNOLOGIES AND FACTORY AUTOMATION (ETFA), 2016,
  • [43] Simulation platform to investigate safe operation of human-robot collaboration systems
    Bobka, Paul
    Germann, Tomas
    Heyn, Jakob K.
    Gerbers, Roman
    Dietrich, Franz
    Droeder, Klaus
    6TH CIRP CONFERENCE ON ASSEMBLY TECHNOLOGIES AND SYSTEMS (CATS), 2016, 44 : 187 - 192
  • [44] Uncertainty Estimation for Safe Human-Robot Collaboration Using Conservation Measures
    Baek, Woo-Jeong
    Ledermann, Christoph
    Kroeger, Torsten
    INTELLIGENT AUTONOMOUS SYSTEMS 17, IAS-17, 2023, 577 : 85 - 102
  • [45] A Time-Optimal Energy Planner for Safe Human-Robot Collaboration
    Pupa, Andrea
    Minelli, Marco
    Secchi, Cristian
    2024 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA 2024), 2024, : 17373 - 17379
  • [46] Human-robot collaboration for safe object transportation using force feedback
    Ernesto Solanes, J.
    Gracia, Luis
    Munoz-Benavent, Pau
    Miro, Jaime Valls
    Carmichael, Marc G.
    Tornero, Josep
    ROBOTICS AND AUTONOMOUS SYSTEMS, 2018, 107 : 196 - 208
  • [47] Modeling Supervisor Safe Sets for Improving Collaboration in Human-Robot Teams
    McPherson, David L.
    Scobee, Dexter R. R.
    Menke, Joseph
    Yang, Allen Y.
    Sastry, S. Shankar
    2018 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2018, : 861 - 868
  • [48] Towards Safe Human-Robot Collaboration Using Deep Reinforcement Learning
    El-Shamouty, Mohamed
    Wu, Xinyang
    Yang, Shanqi
    Albus, Marcel
    Huber, Marco F.
    2020 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2020, : 4899 - 4905
  • [49] EtherCAT-Enabled Depth Camera for Safe Human-Robot Collaboration
    Gsellmann, Peter
    Steinegger, Tobias
    Buchner, Christoph
    Schreiber, Georg
    2024 IEEE INTERNATIONAL CONFERENCE ON ADVANCED INTELLIGENT MECHATRONICS, AIM 2024, 2024, : 785 - 790
  • [50] A Human-Robot Collaboration Framework Based on Human Collaboration Demonstration and Robot Learning
    Peng, Xiang
    Jiang, Jingang
    Xia, Zeyang
    Xiong, Jing
    INTELLIGENT ROBOTICS AND APPLICATIONS, ICIRA 2024, PT VII, 2025, 15207 : 286 - 299