THE METRIC OPERATORS FOR PSEUDO-HERMITIAN HAMILTONIAN

被引:1
|
作者
Wang, Wen-Hua [1 ]
Chen, Zheng-Li [2 ]
Li, Wei [3 ]
机构
[1] Shaanxi Normal Univ, Sch Ethn Educ, Xian 710062, Peoples R China
[2] Shaanxi Normal Univ, Sch Math & Stat, Xian 710119, Peoples R China
[3] Engn Univ PAP, Coll Sci, Xian 710078, Peoples R China
来源
ANZIAM JOURNAL | 2023年 / 65卷 / 03期
基金
中国国家自然科学基金;
关键词
pseudo-Hermitian Hamiltonian; metric operator; vec map; real spectrum; positive-definite inner product; PT-SYMMETRY; QUANTUM-MECHANICS; PRODUCTS;
D O I
10.1017/S1446181123000184
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The Hamiltonian of a conventional quantum system is Hermitian, which ensures real spectra of the Hamiltonian and unitary evolution of the system. However, real spectra are just the necessary conditions for a Hamiltonian to be Hermitian. In this paper, we discuss the metric operators for pseudo-Hermitian Hamiltonian which is similar to its adjoint. We first present some properties of the metric operators for pseudo-Hermitian Hamiltonians and obtain a sufficient and necessary condition for an invertible operator to be a metric operator for a given pseudo-Hermitian Hamiltonian. When the pseudo-Hermitian Hamiltonian has real spectra, we provide a new method such that any given metric operator can be transformed into the same positive-definite one and the new inner product with respect to the positive-definite metric operator is well defined. Finally, we illustrate the results obtained with an example.
引用
收藏
页码:215 / 228
页数:14
相关论文
共 50 条
  • [21] New ansatz for metric operator calculation in pseudo-Hermitian field theory
    Shalaby, Abouzeid M.
    PHYSICAL REVIEW D, 2009, 79 (10):
  • [22] Is pseudo-Hermitian quantum mechanics an indefinite-metric quantum theory?
    Mostafazadeh, A
    CZECHOSLOVAK JOURNAL OF PHYSICS, 2003, 53 (11) : 1079 - 1084
  • [23] Modulated Pseudo-Hermitian Dimer
    S. V. Suchkov
    Russian Physics Journal, 2021, 63 : 1947 - 1951
  • [24] Quantization of pseudo-hermitian systems
    Baldiotti, M. C.
    Fresneda, R.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2024, 57 (29)
  • [25] Pseudo-Hermitian quantum mechanics
    Das, Ashok
    XIV MEXICAN SCHOOL ON PARTICLES AND FIELDS, 2011, 287
  • [26] On hypercomplex pseudo-Hermitian manifolds
    Gribachev, K
    Manev, M
    Dimiev, S
    TRENDS IN COMPLEX ANALYSIS, DIFFERENTIAL GEOMETRY AND MATHEMATICAL PHYSICS, 2003, : 51 - 62
  • [27] PSEUDO-HERMITIAN SYMMETRIC SPACES
    SHAPIRO, RA
    COMMENTARII MATHEMATICI HELVETICI, 1971, 46 (04) : 529 - &
  • [28] Parity-time (PT) invariance and pseudo-Hermitian Hamiltonian of a nonlinear oscillator
    Ben-Aryeh, Y
    Barak, R
    PHYSICS LETTERS A, 2006, 351 (06) : 388 - 390
  • [29] Modulated Pseudo-Hermitian Dimer
    Suchkov, S. V.
    RUSSIAN PHYSICS JOURNAL, 2021, 63 (11) : 1947 - 1951
  • [30] Hermitian dynamics in a class of pseudo-Hermitian networks
    Jin, L.
    Song, Z.
    PHYSICAL REVIEW A, 2011, 84 (04):