Using Machine Learning to Study the Effects of Genetic Predisposition on Brain Aging in the UK Biobank

被引:0
|
作者
Ardila, Karen [1 ,3 ,4 ,5 ,6 ,7 ]
Munro, Emily [2 ,5 ,6 ]
Vega, Fernando [3 ,5 ,6 ]
Mohite, Aashka [3 ,5 ,6 ]
Curtis, Charlotte [4 ,8 ]
Tyndall, Amanda V. [9 ]
MacDonald, M. Ethan [3 ,5 ,6 ]
机构
[1] Univ Autonoma Manizales, Dept Elect & Automat Biomed Engn, Manizales, Colombia
[2] Univ Calgary, Dept Chem Engn, Calgary, AB, Canada
[3] Univ Calgary, Dept Biomed Engn, Calgary, AB, Canada
[4] Univ Calgary, Dept Elect & Software Engn, Calgary, AB, Canada
[5] Univ Calgary, Dept Radiol, Calgary, AB, Canada
[6] Univ Calgary, Hotchkiss Brain Inst, Calgary, AB, Canada
[7] Mitacs Globalink Res Internship Program, Calgary, AB, Canada
[8] Mt Royal Univ, Dept Math & Comp, Calgary, AB, Canada
[9] Univ Calgary, Dept Med Genet, Calgary, AB, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
magnetic resonance imaging; neurogenetics; brain age; machine learning; genome wide association study;
D O I
10.1109/ISBI53787.2023.10230714
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The influence of genetic predisposition on changes in brain morphology during aging remains largely unknown. This study explores the effects of genetic predisposition on three key brain regions: total brain volume (TBV), lateral ventricular volume (LVV), and total hippocampal volume (THV). The brain age gap estimate (BrainAGE) biomarker is used as an input to a genome-wide association study to determine which single nucleotide polymorphisms (SNPs) and genes are associated with accelerated brain aging. Six independent significant SNPs were found to contribute to accelerated morphological changes: TBV had associations on chromosome 17 linked with brain aging, and the total THV had independent significant associations in the APOC1 and TOMM40 gene regions related to neurodegeneration. Lastly, LVV presented a possible novel discovery in the gene NUAK1, known to play a role in cellular senescence. This study provides a framework to uncover complex associations between brain aging physiology and genetics.
引用
收藏
页数:5
相关论文
共 50 条
  • [41] Shared polygenic effects of FEV1 in the first genetic study in UK Biobank
    Allen, Richard J.
    Wain, Louise V.
    Shrine, Nick
    Miller, Suzanne
    Jackson, Victoria E.
    Ntalla, Ioanna
    Artigas, Maria Soler
    Cook, James P.
    Morris, Andrew P.
    Zeggini, Eleftheria
    Marchini, Jonathan
    De-Loukas, Panos
    Hansell, Anna
    Hubbard, Richard
    Pavord, Ian
    Thompson, Neil C.
    Strachan, David P.
    Hall, Ian P.
    Tobin, Martin D.
    GENETIC EPIDEMIOLOGY, 2015, 39 (07) : 529 - 530
  • [42] Phenotypic and genetic associations between anhedonia and brain structure in UK Biobank
    Zhu, Xingxing
    Ward, Joey
    Cullen, Breda
    Lyall, Donald M.
    Strawbridge, Rona J.
    Lyall, Laura M.
    Smith, Daniel J.
    TRANSLATIONAL PSYCHIATRY, 2021, 11 (01)
  • [43] The effects of stress across the lifespan on the brain, cognition and mental health: A UK biobank study
    McManus, Elizabeth
    Haroon, Hamied
    Duncan, Niall W.
    Elliott, Rebecca
    Muhlert, Nils
    NEUROBIOLOGY OF STRESS, 2022, 18
  • [44] Sleep patterns, genetic predisposition, and risk of chronic liver disease: A prospective study of 408,560 UK Biobank participants
    Wang, Wenxiu
    Zhuang, Zhenhuang
    Song, Zimin
    Zhao, Yimin
    Huang, Tao
    JOURNAL OF AFFECTIVE DISORDERS, 2024, 352 : 229 - 236
  • [45] Does age modify the relation between genetic predisposition to glaucoma and various glaucoma traits in the UK Biobank?
    Kim, Jihye
    Aschard, Hugues
    Kang, Jae
    Wiggs, Janey L.
    Khawaja, Anthony
    Pasquale, Louis R.
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2022, 63 (07)
  • [46] Does Age Modify the Relation Between Genetic Predisposition to Glaucoma and Various Glaucoma Traits in the UK Biobank?
    Kim, Jihye
    Kang, Jae H.
    Wiggs, Janey L.
    Zhao, Hetince
    Li, Keva
    Zebardast, Nazlee
    Segre, Ayellet
    Friedman, David S.
    Do, Ron
    Khawaja, Anthony P.
    Aschard, Hugues
    Pasquale, Louis R.
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2025, 66 (02)
  • [47] Predicting left ventricular hypertrophy from the 12-lead electrocardiogram in the UK Biobank imaging study using machine learning
    Naderi, Hafiz
    Ramirez, Julia
    van Duijvenboden, Stefan
    Pujadas, Esmeralda Ruiz
    Aung, Nay
    Wang, Lin
    Anwar Ahmed Chahal, Choudhary
    Lekadir, Karim
    Petersen, Steffen E.
    Munroe, Patricia B.
    EUROPEAN HEART JOURNAL - DIGITAL HEALTH, 2023, 4 (04): : 316 - 324
  • [48] Cardiovascular disease risk prediction using automated machine learning: A prospective study of 423,604 UK Biobank participants
    Alaa, Ahmed M.
    Bolton, Thomas
    Di Angelantonio, Emanuele
    Rudd, James H. F.
    van der Schaar, Mihaela
    PLOS ONE, 2019, 14 (05):
  • [49] MACHINE LEARNING METHODS TO PREDICT UNMEASURED PHENOTYPES IN LARGE-SCALE BIOBANK STUDIES: PROOF OF PRINCIPLE USING AUDIT IN THE UK BIOBANK
    Gentry, Amanda
    Peterson, Roseann
    Edwards, Alexis
    Riley, Brien
    Webb, B. Todd
    EUROPEAN NEUROPSYCHOPHARMACOLOGY, 2019, 29 : S125 - S126
  • [50] Machine learning-based identification of proteomic markers in colorectal cancer using UK Biobank data
    Radhakrishnan, Swarnima Kollampallath
    Nath, Dipanwita
    Russ, Dominic
    Merodio, Laura Bravo
    Lad, Priyani
    Daisi, Folakemi Kola
    Acharjee, Animesh
    FRONTIERS IN ONCOLOGY, 2025, 14