Event Detection, Localization, and Classification Based on Semi-Supervised Learning in Power Grids

被引:5
|
作者
Yang, Fan [1 ]
Ling, Zenan [2 ,3 ]
Zhang, Yuhang [4 ]
He, Xing [4 ]
Ai, Qian [4 ]
Qiu, Robert C. [5 ]
机构
[1] China Elect Power Res Inst, Beijing 100192, Peoples R China
[2] Peking Univ, Key Lab Machine Percept, Beijing 100871, Peoples R China
[3] Peking Univ, Sch Artificial Intelligence, Beijing 100871, Peoples R China
[4] Shanghai Jiao Tong Univ, State Energy Smart Grid Res & Dev Ctr, Dept Elect Engn, Shanghai 200240, Peoples R China
[5] Huazhong Univ Sci & Technol, Sch Elect Informat & Commun, Wuhan 430074, Peoples R China
基金
中国国家自然科学基金;
关键词
Classification; event detection and localization; invertible neural network; pseudo label; risk assessment; semi-supervised learning; SYNCHROPHASOR DATA; ANOMALY DETECTION; TRANSMISSION; SYSTEM; LINE;
D O I
10.1109/TPWRS.2022.3209343
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Real-time situational awareness and event analysis are crucial to the security of the modern power grid, which is a complicated nonlinear system and hard to be completely modeled. Massive data is collected but the information hasn't been sufficiently leveraged. To effectively extract the event features, this paper proposes a framework for event detection, localization, and classification in power grids based on semi-supervised learning. Specifically, event detection is realized by invertible neural network (INN), hence to learn complex distributions of real-world measurements in a flexible way. Abundant normal measurements are learned by INN and explicit log-likelihoods then serve as the indicator to distinguish events with adequate sensitivity. Moreover, risks induced by events are assessed and spatial locations are determined. Since the majority of power system events are recorded without labels in practice, a pseudo label (PL) technique is leveraged to classify events with limited labels. The PL-based approach has an enhanced separating capability for events and outperforms other approaches under a low labeling rate. Case studies with simulated data in the IEEE 39-bus system and real-world measurements verify the effectiveness of the proposed framework.
引用
收藏
页码:4080 / 4094
页数:15
相关论文
共 50 条
  • [41] Improving Localization for Semi-Supervised Object Detection
    Rossi, Leonardo
    Karimi, Akbar
    Prati, Andrea
    IMAGE ANALYSIS AND PROCESSING, ICIAP 2022, PT II, 2022, 13232 : 516 - 527
  • [42] Hungarian Traffic Sign Detection and Classification using Semi-Supervised Learning
    Kovacs, Levente
    Kertesz, Gabor
    IEEE 15TH INTERNATIONAL SYMPOSIUM ON APPLIED COMPUTATIONAL INTELLIGENCE AND INFORMATICS (SACI 2021), 2021, : 437 - 441
  • [43] Semi-supervised New Event Type Induction and Event Detection
    Huang, Lifu
    Ji, Heng
    PROCEEDINGS OF THE 2020 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING (EMNLP), 2020, : 718 - 724
  • [44] Ant Based Semi-supervised Classification
    Halder, Anindya
    Ghosh, Susmita
    Ghosh, Ashish
    SWARM INTELLIGENCE, 2010, 6234 : 376 - +
  • [45] A review of semi-supervised learning for text classification
    José Marcio Duarte
    Lilian Berton
    Artificial Intelligence Review, 2023, 56 : 9401 - 9469
  • [46] Fault detection in power grids based on improved supervised machine learning binary classification
    Wadi, Mohammed
    JOURNAL OF ELECTRICAL ENGINEERING-ELEKTROTECHNICKY CASOPIS, 2021, 72 (05): : 315 - 322
  • [47] A Semi-Supervised Learning Algorithm for Data Classification
    Kuo, Cheng-Chien
    Shieh, Horng-Lin
    INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE, 2015, 29 (05)
  • [48] Semi-supervised tensor learning for image classification
    Zhang, Jianguang
    Han, Yahong
    Jiang, Jianmin
    MULTIMEDIA SYSTEMS, 2017, 23 (01) : 63 - 73
  • [49] Semi-supervised tensor learning for image classification
    Jianguang Zhang
    Yahong Han
    Jianmin Jiang
    Multimedia Systems, 2017, 23 : 63 - 73
  • [50] Semi-supervised learning for question classification in CQA
    Yiyang Li
    Lei Su
    Jun Chen
    Liwei Yuan
    Natural Computing, 2017, 16 : 567 - 577