Machine learning-based prediction of the seismic response of fault-crossing natural gas pipelines

被引:5
|
作者
Zhang, Wenyang [1 ]
Ayello, Francois [2 ]
Honegger, Doug [3 ]
Bozorgnia, Yousef [4 ]
Taciroglu, Ertugrul [4 ]
机构
[1] Univ Texas Austin, Texas Adv Comp Ctr, Austin, TX 78758 USA
[2] DNV GL, Dublin, OH USA
[3] DG Honegger Consulting, Arroyo Grande, CA USA
[4] Univ Calif Los Angeles, Los Angeles, CA USA
来源
关键词
crossing faults; machine learning; natural gas pipelines; seismic response prediction; SOIL-PIPE INTERACTION; SAN-FRANCISCO; EARTHQUAKE; PERFORMANCE; BEHAVIOR; DAMAGE;
D O I
10.1002/eqe.3945
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Herein, we utilized machine-learning (ML) and data-driven (regression) techniques to tackle a critical infrastructure engineering problem-namely, predicting the seismic response of natural gas pipelines crossing earthquake faults. Such a 3D nonlinear problem can take up to 10 h to solve by performing finite element analysis (FEA), considering the length of the pipeline and a large number of pipe and soil elements. However, the ML and data-driven techniques can learn the projection rule of input-output and predict the pipeline response instantaneously given a set of input features. In addition, the well-trained ML model can be implemented for regional-scale risk and rapid post-event damage assessments. In this study, the input for ML comprised approximately 217K nonlinear FEAs, which covered a wide range of combinations of soil, structural and fault properties and yielded critical pipe strain responses under fault-rupture displacements. We adopted various regression models and physics-constrained neural networks, which can accurately and rapidly predict the tensile and compressive strains for a broad range of probable fault-rupture displacements. Performances of various ML and conventional statistical models were systematically examined. Not surprisingly, neural networks exhibited the best performance for this multi-output regression problem, in which R-2 > 0.95 was achieved for a wide range of fault displacement (FD) levels. Further, we used the trained neural network with 14.5 million Monte-Carlo-generated input samples to predict the maximum tensile and compressive strain curves of pipelines. This new dataset aimed at filling the missing input-output points from the 217K FEAs, and improved the accuracy of the prediction of probability of failure for natural gas pipelines under FD hazards.
引用
收藏
页码:3238 / 3255
页数:18
相关论文
共 50 条
  • [31] Practical Machine Learning-Based Sepsis Prediction
    Pettinati, Michael J.
    Chen, Gengbo
    Rajput, Kuldeep Singh
    Selvaraj, Nandakumar
    42ND ANNUAL INTERNATIONAL CONFERENCES OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY: ENABLING INNOVATIVE TECHNOLOGIES FOR GLOBAL HEALTHCARE EMBC'20, 2020, : 4986 - 4991
  • [32] Machine learning-based prediction of cancer immunotherapy response using circulating cytokines
    Wei, Feifei
    Azuma, Koichi
    Nakahara, Yoshiro
    Saito, Haruhiro
    Kouro, Taku
    Himuro, Hidetomo
    Horaguchi, Shun
    Tsuji, Kayoko
    Sasada, Tetsuro
    CANCER SCIENCE, 2023, 114 : 1013 - 1013
  • [33] Seismic response of natural gas and water pipelines in the Ji-Ji earthquake
    Chen, WW
    Shih, B
    Chen, YC
    Hung, JH
    Hwang, HH
    SOIL DYNAMICS AND EARTHQUAKE ENGINEERING, 2002, 22 (9-12) : 1209 - 1214
  • [34] Deep Learning-based fault prediction in cloud system
    Dinh Dai Vu
    Xuan Tuong Vu
    Kim, Younghan
    12TH INTERNATIONAL CONFERENCE ON ICT CONVERGENCE (ICTC 2021): BEYOND THE PANDEMIC ERA WITH ICT CONVERGENCE INNOVATION, 2021, : 1826 - 1829
  • [35] Formal Verification of a Hybrid Machine Learning-Based Fault Prediction Model in Internet of Things Applications
    Souri, Alireza
    Mohammed, Amin Salih
    Potrus, Moayad Yousif
    Malik, Mazhar Hussain
    Safara, Fatemeh
    Hosseinzadeh, Mehdi
    IEEE ACCESS, 2020, 8 : 23863 - 23874
  • [36] Machine Learning and Deep Learning-Based Students’ Grade Prediction
    Korchi A.
    Messaoudi F.
    Abatal A.
    Manzali Y.
    Operations Research Forum, 4 (4)
  • [37] Prediction of Corrosion of Oil Pipelines in Ecuador based on Machine Learning
    Mera, Klever
    Paz, Henry
    PROCEEDINGS OF THE 2022 XXIV ROBOTICS MEXICAN CONGRESS (COMROB), 2022, : 125 - 131
  • [38] Machine learning-based seismic capability evaluation for school buildings
    Chi, Nai-Wen
    Wang, Jyun-Ping
    Liao, Jia-Hsing
    Cheng, Wei-Choung
    Chen, Chuin-Shan
    AUTOMATION IN CONSTRUCTION, 2020, 118
  • [39] Machine Learning-Based Numerical Dispersion Mitigation in Seismic Modelling
    Gadylshin, Kirill
    Lisitsa, Vadim
    Gadylshina, Kseniia
    Vishnevsky, Dmitry
    Novikov, Mikhail
    COMPUTATIONAL SCIENCE AND ITS APPLICATIONS, ICCSA 2021, PT I, 2021, 12949 : 34 - 47
  • [40] Machine Learning-Based Seismic Reliability Assessment of Bridge Networks
    Chen, Mengdie
    Mangalathu, Sujith
    Jeon, Jong-Su
    JOURNAL OF STRUCTURAL ENGINEERING, 2022, 148 (07)