Cyclotetrabenzil Derivatives for Electrochemical Lithium-Ion Storage

被引:1
|
作者
Meng, Jianing [1 ]
Robles, Alexandra [1 ]
Jalife, Said [1 ]
Ren, Wen [2 ]
Zhang, Ye [3 ,4 ,5 ]
Zhao, Lihong [3 ,4 ,5 ]
Liang, Yanliang [3 ,4 ,5 ]
Wu, Judy I. [1 ]
Miljanic, Ognjen S. [1 ]
Yao, Yan [3 ,4 ,5 ]
机构
[1] Univ Houston, Dept Chem, 3585 Cullen Blvd, Houston, TX 77204 USA
[2] Univ Houston, Dept Chem & Biomol Engn, Houston, TX 77204 USA
[3] Univ Houston, Dept Elect & Comp Engn, Houston, TX 77204 USA
[4] Univ Houston, Mat Sci & Engn Program, Houston, TX 77204 USA
[5] Univ Houston, Texas Ctr Superconduct, Houston, TX 77204 USA
基金
美国国家科学基金会;
关键词
Cyclotetrabenzil; Lithium-Ion Batteries; Macrocycles; Multielectron Transfer; Ring Strain; MACROCYCLES;
D O I
10.1002/anie.202300892
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Organic electrode materials could revolutionize batteries because of their high energy densities, the use of Earth-abundant elements, and structural diversity which allows fine-tuning of electrochemical properties. However, small organic molecules and intermediates formed during their redox cycling in lithium-ion batteries (LIBs) have high solubility in organic electrolytes, leading to rapid decay of cycling performance. We report the use of three cyclotetrabenzil octaketone macrocycles as cathode materials for LIBs. The rigid and insoluble naphthalene-based cyclotetrabenzil reversibly accepts eight electrons in a two-step process with a specific capacity of 279 mAhg 1 and a stable cycling performance with. 65% capacity retention after 135 cycles. DFT calculations indicate that its reduction increases both ring strain and ring rigidity, as demonstrated by computed high distortion energies, repulsive regions in NCI plots, and close [C center dot center dot center dot C] contacts between the naphthalenes. This work highlights the importance of shape-persistency and ring strain in the design of redox-active macrocycles that maintain very low solubility in various redox states.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Electrochemical energy storage: The lithium-ion batteries
    Billaud, D
    [J]. REWAS'99 GLOBAL SYMPOSIUM ON RECYCLING, WASTE TREATMENT AND CLEAN TECHNOLOGY VOLUME I-III, 1999, : 1969 - 1977
  • [2] The electrochemical energy storage: contribution of the rechargeable lithium-ion batteries
    Franger, Sylvain
    Benoit, Charlotte
    Saint-Martin, Romuald
    [J]. ACTUALITE CHIMIQUE, 2008, (325): : 41 - 44
  • [3] Unified model of lithium-ion battery and electrochemical storage system
    Barcellona, Simone
    Colnago, Silvia
    Codecasa, Lorenzo
    Piegari, Luigi
    [J]. JOURNAL OF ENERGY STORAGE, 2023, 73
  • [4] Electrochemical properties and lithium-ion storage mechanism of LiCuVO4 as an intercalation anode material for lithium-ion batteries
    Li, Malin
    Yang, Xu
    Wang, Chunzhong
    Chen, Nan
    Hu, Fang
    Bie, Xiaofei
    Wei, Yingjin
    Du, Fei
    Chen, Gang
    [J]. JOURNAL OF MATERIALS CHEMISTRY A, 2015, 3 (02) : 586 - 592
  • [5] Enhanced Electrochemical Lithium-Ion Charge Storage of Iron Oxide Nanosheets
    Niu, Sibo
    McFeron, Ryan
    Godinez-Salomon, Fernando
    Chapman, Brian S.
    Damin, Craig A.
    Tracy, Joseph B.
    Augustyn, Veronica
    Rhodes, Christopher P.
    [J]. CHEMISTRY OF MATERIALS, 2017, 29 (18) : 7794 - 7807
  • [6] Hydrogen Isotope Effects on Aqueous Electrolyte for Electrochemical Lithium-Ion Storage
    Chou, Jia
    Zhao, Yao
    Li, Xue-Ting
    Wang, Wen-Peng
    Tan, Shuang-Jie
    Wang, Ya-Hui
    Zhang, Juan
    Yin, Ya-Xia
    Wang, Fuyi
    Xin, Sen
    Guo, Yu-Guo
    [J]. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2022, 61 (25)
  • [7] Electrochemical energy generation and storage. fuel cells and lithium-Ion batteries
    Abruña, Héctor D.
    Matsumoto, Futoshi
    Cohen, Jamie L.
    Jin, G.
    Roychowdhury, Chandrani
    Prochaska, Mark
    Van Bruce Dover, R.
    Disalvo, Frank J.
    Kiya, Yasuyuki
    Henderson, Jay C.
    Hutchison, Geoffrey R.
    [J]. Bulletin of the Chemical Society of Japan, 2007, 80 (10): : 1843 - 1855
  • [8] Hybrid Thermo-Electrochemical In Situ Instrumentation for Lithium-Ion Energy Storage
    Amietszajew, Tazdin
    Fleming, Joe
    Roberts, Alexander J.
    Widanage, Widanalage D.
    Greenwood, David
    Kok, Matt D. R.
    Pham, Martin
    Brett, Dan J. L.
    Shearing, Paul R.
    Bhagat, Rohit
    [J]. BATTERIES & SUPERCAPS, 2019, 2 (11) : 934 - 940
  • [9] Synthesis, characterization and electrochemical lithium-ion storage properties of sulfonylcalix[4]quinone
    Zhang, Meng
    Lin, Yilin
    Huang, Weiwei
    [J]. INORGANIC CHEMISTRY FRONTIERS, 2023, 10 (22) : 6738 - 6745
  • [10] Electrochemical energy generation and storage.: Fuel cells and lithium-ion batteries
    Abruña, Hector D.
    Matsumoto, Futoshi
    Cohen, Jamie L.
    Jin, Jing
    Roychowdhury, Chandrani
    Prochaska, Mark
    van Dover, R. Bruce
    DiSalvo, Frank J.
    Kiya, Yasuyuki
    Henderson, Jay C.
    Hutchison, Geoffrey R.
    [J]. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN, 2007, 80 (10) : 1843 - 1855